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Fractals?

What properties do fractals have?
» Fine detail at small scales
» (approximately?) composed of smaller copies of itself
» “fractal dimension” different than “topological dimension”

But...no clear definition (most sensible attempts at definitions have
exceptions)!
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Cantor Set
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» Ternary representations with digits 0 and 2
» Each level: 2" intervals each with length 1/3"

> therefore each layer has length (2/3)" — 0, therefore ‘length’
zero

» contains as many points [0, 1]

P ‘bijection’ taking ternary representations to binary
representations
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lterated Function System

» Finite set of maps f; which “moves points closer together”
» Sierpinsky triangle
» Koch curve

» Starting shape does not matter!
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» Continuous curve (can be drawn without lifting pencil)
> Infinite ‘length’ (each layer has length (4/3)" — o)
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Koch Curves

» Koch Curve(s)

» Continuous curve (can be drawn without lifting pencil)
> Infinite ‘length’ (each layer has length (4/3)" — o)

» how to distinguish the different curves?
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Dimension

» Manifold / smooth object: ‘locally’ looks like R”, so we say it
has dimension n

» general objects with no nice local structure? (zooming in does
not make it smoother)

P> one idea: dimension as ‘scaling property’
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Scaling

Square-cube law (surface area scales like n?, volume scales like
n3)
Scaling: given a square [0,1]?, how many smaller squares does
it take to cover?

» 4 squares with side length 1/2

> l%)squares with side length 1/n
Cubes: r®cubes with side length 1/n

Generally: power-law for number of cubes to cover a set
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Scaling

» Square-cube law (surface area scales like n?, volume scales like
n3)

» Scaling: given a square [0, 1]2, how many smaller squares does
it take to cover?

» 4 squares with side length 1/2
> n? squares with side length 1/n

» Cubes: n® cubes with side length 1/n
» Generally: power-law for number of cubes to cover a set
This is known as the Box / Minkowski dimension
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> Fix side length 1/n ~ 1/3K, need 2 intervals

» Then nlog2/ log3 ~ (3Iog2/ Iog3)k — 2k )

» Cantor set has dimension log 2/ log 3 =~ 0.630929754
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Box Dimension of Cantor Set

> Fix side length 1/n ~ 1/3K, need 2 intervals
» Then nlog2/ log3 ~ (3Iog2/ Iog3)k — 2k

» Cantor set has dimension log2/ log 3 ~ 0.630929754

Example: dimension distinguishes the general Koch curves
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Active Research

» Many other types of dimension studied (Hausdorff, Packing,
Assouad, L9, ...)

» How to distinguish sets with dimensions?

» What (metric, topological, etc.) properties do dimensions
influence, or influence dimensions?

» Connections to harmonic analysis, etc. (Projections of sets,
Kakeya conjecture, ...)
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> System governed by some sort of time-dependent
transformation (discrete, continuous)

> Interested in: long term behaviour of the system from initial
condition

» describe trajectory based on initial conditions
» where does the trajectory end up / spend most time?



Doubling Map

» Consider map f(x) = 2x (mod 1) on [0, 1] (“doubling map”)
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Doubling Map

» Consider map f(x) = 2x (mod 1) on [0, 1] (“doubling map”)

» If x has binary expansion
0.b1bob3by . ..

then
f(x) =0.babsbs . ...

» can study sequences {0, 1}V (as encoding points in [0, 1])
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Orbits

» What do orbits (x, f(x), f o f(x),...) look like?

» x rational
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Orbits

» What do orbits (x, f(x), f o f(x),...) look like?
> x rational
> binary expansion is periodic (ending repeats infinitely)
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Orbits

» What do orbits (x, f(x), f o f(x),...) look like?

P> x rational
> binary expansion is periodic (ending repeats infinitely)
> therefore orbit is finite

» What if x irrational? What does the orbit look like?

» Point 0.0100011011000001010011100101110111... has dense
orbit

» Point 0.1000001000000000000000000000000000000000001...
does not have dense orbit
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Theorem (Birkhoff Ergodic)
If f is ‘ergodic’, then ‘most’ orbits spend time in a region
proportional to the 'size’ of the region.
» 2x (mod 1): if x is a randomly-chosen point and [a, b] is an
interval, then approximately n(b — a) of the points in

{6 F(x), Fof(x),.... D) | —a
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are in [a, b].
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Ergodic Theorems: typical behaviour

Theorem (Birkhoff Ergodic)

If f is ‘ergodic’, then ‘most’ orbits spend time in a region
proportional to the 'size’ of the region.

» 2x (mod 1): if x is a randomly chosen point and [a, b] is an
interval, then approximately n(b — a) of the points in

{x, f(x), fof(x),...,fD(x)}

are in [a, b].
» with probability 1, a random point has dense orbit

» But there are many points without dense orbits!
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Further directions

» PDEs, modelling
» Number theory

» Doubling map: properties of decimal expansions
> Gauss map x — 1/x (mod 1): continued fractions

» important tool in many other areas of maths / analysis
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