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Fractals in Nature?
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Fractals?

What properties do fractals have?

I Fine detail at small scales

I (approximately?) composed of smaller copies of itself

I “fractal dimension” different than “topological dimension”

But...no clear definition (most sensible attempts at definitions have
exceptions)!
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Cantor Set

I Ternary representations with digits 0 and 2
I Each level: 2n intervals each with length 1/3n

I therefore each layer has length (2/3)n → 0, therefore ‘length’
zero

I contains as many points [0, 1]

I ‘bijection’ taking ternary representations to binary
representations
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Iterated Function System

I Finite set of maps fi which “moves points closer together”

I Sierpinsky triangle

I Koch curve

I Starting shape does not matter!
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Koch Curves

I Koch Curve(s)

I Continuous curve (can be drawn without lifting pencil)
I Infinite ‘length’ (each layer has length (4/3)n →∞)

I how to distinguish the different curves?
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Dimension

I Manifold / smooth object: ‘locally’ looks like Rn, so we say it
has dimension n

I general objects with no nice local structure? (zooming in does
not make it smoother)

I one idea: dimension as ‘scaling property’
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Scaling

I Square-cube law (surface area scales like n2, volume scales like
n3)

I Scaling: given a square [0, 1]2, how many smaller squares does
it take to cover?

I 4 squares with side length 1/2
I n2 squares with side length 1/n

I Cubes: n3 cubes with side length 1/n

I Generally: power-law for number of cubes to cover a set

This is known as the Box / Minkowski dimension
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Box Dimension of Cantor Set

I Fix side length 1/n ≈ 1/3k , need 2k intervals

I Then nlog 2/ log 3 ≈ (3log 2/ log 3)k = 2k

I Cantor set has dimension log 2/ log 3 ≈ 0.630929754

Example: dimension distinguishes the general Koch curves
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Active Research

I Many other types of dimension studied (Hausdorff, Packing,
Assouad, Lq, ...)

I How to distinguish sets with dimensions?

I What (metric, topological, etc.) properties do dimensions
influence, or influence dimensions?

I Connections to harmonic analysis, etc. (Projections of sets,
Kakeya conjecture, ...)
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Dynamical Systems
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I System governed by some sort of time-dependent
transformation (discrete, continuous)

I Interested in: long term behaviour of the system from initial
condition

I describe trajectory based on initial conditions
I where does the trajectory end up / spend most time?
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Doubling Map

I Consider map f (x) = 2x (mod 1) on [0, 1] (“doubling map”)

I If x has binary expansion

0.b1b2b3b4 . . .

then
f (x) = 0.b2b3b4 . . . .

I can study sequences {0, 1}N (as encoding points in [0, 1])
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Orbits

I What do orbits (x , f (x), f ◦ f (x), . . .) look like?

I x rational

I binary expansion is periodic (ending repeats infinitely)
I therefore orbit is finite

I What if x irrational? What does the orbit look like?

I Point 0.0100011011000001010011100101110111... has dense
orbit

I Point 0.1000001000000000000000000000000000000000001...
does not have dense orbit
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Ergodic Theorems: typical behaviour

Theorem (Birkhoff Ergodic)

If f is ‘ergodic’, then ‘most’ orbits spend time in a region
proportional to the ‘size‘ of the region.

I 2x (mod 1): if x is a randomly chosen point and [a, b] is an
interval, then approximately n(b − a) of the points in

{x , f (x), f ◦ f (x), . . . , f (n−1)(x)}

are in [a, b].

I with probability 1, a random point has dense orbit

I But there are many points without dense orbits!
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Further directions

I PDEs, modelling

I Number theory

I Doubling map: properties of decimal expansions
I Gauss map x 7→ 1/x (mod 1): continued fractions

I important tool in many other areas of maths / analysis
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