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Self-similar Measures and the Weak Separation
Condition

Definition 0.1 Let Z be a finite index set and let {S;};ez be maps from R to R of
the form
Si(x) = rix +d; where 0 < |r;| <1 and d; € R

for each i € . Let (pi)icz be a probability vector, i.e. p; > 0 and > ., p; = 1.
Then there is a unique Borel probability measure satisfying

p= pi-posS; "

We say p 1s a selt-similar measure, and supp 4 = K is a self-similar set.
Definition 0.2 Let 7% = | J,2, Z". Given o = (04, . . .

Sazsalo'”osaj; e =T, Toy, andpazpal"'pan

,0;) € L%, we denote

We also write 0~ = (01,...,0,-1). Then given t > 0, put
N={oel |rs] <t <|r,-|}.
We say that {S;}icz satisfies the weak separation condition if
sup #{S, 0 €N\, S,(K)N B(x,t)} < 0.

reK >0
Throughout, p is a self-similar measure and the associated IFS satisfies the weak

separation condition.

Net Intervals and Neighbour Sets

Let hy, ..., hs be elements of the set {S,(0), 5,(1) : 0 € A} listed in strictly ascending
order. An interval [h;, h; 1] where (h;, hi1) N K # () is a net interval (of generation

t).
Suppose A is a net interval. Denote by Tx the unique contraction Ta(z) = rx + a
with r > 0 such that Tx(conv(K)) = A.

Definition 0.3 A similarity f(x) = Rx + a is a neighbour of A of generation t
if there exists some o € N; such that So(K)NA° # 0 and f = TA_1 oS,. The
neighbour set of A s the set of all possible neighbours.

We can define a notion of transition generation, tg(A), to capture the notion of

children of a neighbour set.

Proposition 0.4 Up to rescaling by Thx, the geometry and neighbour sets of the
children of a net interval A depend only on V(A).

The transition graph is a weighted graph where the vertices are the possible neighbour
sets, and edges correspond to parent—child pairs of neighbour sets.

e Bijection 7 from finite paths in the transition graph with weight approximately ¢ to
net intervals in generation .

e Can associate transition matrices to edges such that p(A) is the norm of the
product of matrices corresponding to 7 1(A).

e The edge weights keep track of the current scale (important since the IFS is not
necessarily equicontractive).

Example transition graph

Consider the IF'S given by the maps
So(x)=r-x+p(l—r)

where p > 0, r > 0 satisty p 4+ 2r — pr < 1. The transition graph, along with the
transition matrices, are given below:

Si(x)=p-x Ss(x)=r-x+1—r

Edge Weight Transition Matrix

es e7 € p (p1)
L gp—— 5 e T (p1p3 p2)

€2 €9 r (pg)

€3 r (pg)

€4 % (pl)
€5 % (p1p3 102)

€1 €0 €6 e r (pz)

€7 r (pz)

€3 r (p3)

()
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e - ( P3 O)
P1P3 D2

Since the transition graph has only one loop class, the multifractal formalism is satisfied
for all choices of probabilities.
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LY-spectra and Multifractal Formalism

Definition 0.5 The L%-spectrum of u is given by

1 ' B i)t 1
7,(q) = liminf ogsup ) _; U B(zi, 1))
t—0 10gt
for each q € R, where the supremum 1is over disjoint families of closed balls with
centres x; € K.

Let

log u(B(z,7))
K, (o) ={x € suppp : 71}2(1) oz 7 = a}.

The multifractal formalism states, roughly speaking, that the dimension of the level
sets can be computed as the concave conjugate of 7(q), i.e.

dimy K (o) = 7, () = ;glf&{qoz — 7,(q) }-
If the IF'S satisfies the open set condition, the multifractal formalism is always satisfied.
However, under the weak separation condition, the multifractal formalism can fail for

g < 0.

Definition 0.6 We call the strongly connected components of the transition graph
loop classes. We can associate to each loop class L a certain subadditive set func-
tion, and define corresponding loop class Li-spectra 7, and loop class multifractal
spectra fp.

Heuristically, the loop classes will have “more regularity” than the self-similar measure
1, so one would hope that they satisty the multifractal formalism.

Multifractal decomposition

Theorem 0.7 Suppose n is a self-stmilar measure with finite transition graph.
Denote the loop classes by L., ...,L,, and corresponding symbolic Li-spectra
Ty ..., T . ouppose each loop class is non-degenerate. Then:

1. If the irreducibility assumption 1s satisfied,
fula) = max{7; (), ..., 77 (a)}.
2. If the decomposability assumption is satisfied, the limit defining 7,(q) exists
for every q € R. Moreover,
7,(q) = min{7.,(q), ..., 7z, (q)}.

If the multifractal formalism fails, this occurs on the phase transitions between distinct
loop class Li-spectra.
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