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Self-similar Measures and the Weak Separation

Condition

Definition 0.1 Let I be a finite index set and let {Si}i∈I be maps from R to R of
the form

Si(x) = rix + di where 0 < |ri| < 1 and di ∈ R
for each i ∈ I. Let (pi)i∈I be a probability vector, i.e. pi > 0 and

∑
i∈I pi = 1.

Then there is a unique Borel probability measure satisfying

µ =
∑
i∈I

pi · µ ◦ S−1
i .

We say µ is a self-similar measure, and suppµ = K is a self-similar set.

Definition 0.2 Let I∗ =
⋃∞
k=0 Ik. Given σ = (σ1, . . . , σj) ∈ I∗, we denote

Sσ = Sσ1 ◦ · · · ◦ Sσj, rσ = rσ1 · · · rσj, and pσ = pσ1 · · · pσn
We also write σ− = (σ1, . . . , σj−1). Then given t > 0, put

Λt = {σ ∈ I∗ : |rσ| < t ≤ |rσ−|}.
We say that {Si}i∈I satisfies the weak separation condition if

sup
x∈K,t>0

#{Sσ : σ ∈ Λr, Sσ(K) ∩B(x, t)} <∞.

Throughout, µ is a self-similar measure and the associated IFS satisfies the weak
separation condition.

Net Intervals and Neighbour Sets

Let h1, . . . , hs be elements of the set {Sσ(0), Sσ(1) : σ ∈ Λt} listed in strictly ascending
order. An interval [hi, hi+1] where (hi, hi+1) ∩K 6= ∅ is a net interval (of generation
t).
Suppose ∆ is a net interval. Denote by T∆ the unique contraction T∆(x) = rx + a
with r > 0 such that T∆(conv(K)) = ∆.

Definition 0.3 A similarity f (x) = Rx + a is a neighbour of ∆ of generation t
if there exists some σ ∈ Λt such that Sσ(K) ∩ ∆◦ 6= ∅ and f = T−1

∆ ◦ Sσ. The
neighbour set of ∆ is the set of all possible neighbours.

We can define a notion of transition generation, tg(∆), to capture the notion of
children of a neighbour set.

Proposition 0.4 Up to rescaling by T∆, the geometry and neighbour sets of the
children of a net interval ∆ depend only on V(∆).

The transition graph is a weighted graph where the vertices are the possible neighbour
sets, and edges correspond to parent–child pairs of neighbour sets.

• Bijection π from finite paths in the transition graph with weight approximately t to
net intervals in generation t.

• Can associate transition matrices to edges such that µ(∆) is the norm of the
product of matrices corresponding to π−1(∆).

• The edge weights keep track of the current scale (important since the IFS is not
necessarily equicontractive).

Example transition graph

Consider the IFS given by the maps

S1(x) = ρ · x S2(x) = r · x + ρ(1− r) S3(x) = r · x + 1− r
where ρ > 0, r > 0 satisfy ρ + 2r − ρr ≤ 1. The transition graph, along with the
transition matrices, are given below:
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Since the transition graph has only one loop class, the multifractal formalism is satisfied
for all choices of probabilities.

Lq-spectra and Multifractal Formalism

Definition 0.5 The Lq-spectrum of µ is given by

τµ(q) := lim inf
t→0

log sup
∑

i µ(B(xi, t))
q

log t

for each q ∈ R, where the supremum is over disjoint families of closed balls with
centres xi ∈ K.

Let

Kµ(α) =
{
x ∈ suppµ : lim

r→0

log µ(B(x, r))

log r
= α

}
.

The multifractal formalism states, roughly speaking, that the dimension of the level
sets can be computed as the concave conjugate of τ (q), i.e.

dimHK(α) = τ ∗µ(α) := inf
q∈R
{qα− τµ(q)}.

If the IFS satisfies the open set condition, the multifractal formalism is always satisfied.
However, under the weak separation condition, the multifractal formalism can fail for
q < 0.

Definition 0.6 We call the strongly connected components of the transition graph
loop classes. We can associate to each loop class L a certain subadditive set func-
tion, and define corresponding loop class Lq-spectra τL and loop class multifractal
spectra fL.

Heuristically, the loop classes will have “more regularity” than the self-similar measure
µ, so one would hope that they satisfy the multifractal formalism.

Multifractal decomposition

Theorem 0.7 Suppose µ is a self-similar measure with finite transition graph.
Denote the loop classes by L1, . . . ,Lm and corresponding symbolic Lq-spectra
τL1
, . . . , τLm. Suppose each loop class is non-degenerate. Then:

1. If the irreducibility assumption is satisfied,

fµ(α) = max{τ ∗L1
(α), . . . , τ ∗Lm(α)}.

2. If the decomposability assumption is satisfied, the limit defining τµ(q) exists
for every q ∈ R. Moreover,

τµ(q) = min{τL1
(q), . . . , τLm(q)}.

If the multifractal formalism fails, this occurs on the phase transitions between distinct
loop class Lq-spectra.
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