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ABSTRACT. For any self-similar measure µ in R, we show that the dis-
tribution of µ is controlled by products of non-negative matrices governed
by a finite or countable graph depending only on the IFS. This generalizes
the net interval construction of Feng from the equicontractive finite type case.
When the measure satisfies the weak separation condition, we prove that this
directed graph has a unique attractor. This allows us to verify the multifractal
formalism for restrictions of µ to certain compact subsets of R, determined
by the directed graph. When the measure satisfies the generalized finite type
condition with respect to an open interval, the directed graph is finite and we
prove that if the multifractal formalism fails at some q ∈ R, there must be a
cycle with no vertices in the attractor. As a direct application, we verify the
complete multifractal formalism for an uncountable family of IFSs with exact
overlaps and without logarithmically commensurable contraction ratios.
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1. INTRODUCTION

Self-similar measures in R are perhaps the simplest examples of measures which
exhibit complex local structure. These measures are associated with finite sets of
similarity maps in R. To be precise, by an iterated function system of similarities (IFS)
we mean a finite set of maps {Si}i∈I where each Si(x) = rix+ di and 0 < |ri| < 1.
The attractor, or self-similar set, of this system is the unique compact set K satisfying⋃

i∈I Si(K) = K. Given a probability vector p = (pi)i∈I where each pi > 0 and∑
i pi = 1, the associated self-similar measure is the unique Borel probability measure

satisfying

µp(E) =
∑
i∈I

piµp ◦ S−1
i (E)

for any Borel set E ⊆ R. For a more through discussion of the background and
basic properties of self-similar sets and measures, we refer the reader to Falconer’s
book [Fal97].

In order to understand the general structure of the measure µp or the self-
similar set K, one often considers basic dimensional quantities such as the Haus-
dorff dimension dimHK and analogous statements for measures, or other notions
of dimension. Computing these values can be highly non-trivial for general iter-
ated function systems of similarities and there is significant literature on this matter
(see, for example, [BG92; FH09; FHO+15; Hoc14; JR21; LN07; NW01; Sch94]). In
this paper, we focus on a more fine-grained notion of dimension known as the
local dimension. Given a point x ∈ K = suppµp, the local dimension is given by

dimloc µp(x) = lim
t→0

log µp(B(x, t))

log t
,

when the limit exists. From the perspective of multifractal analysis, one is in-
terested in determining geometric properties of the sets K(α) := {x ∈ K :
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dimloc µp(x) = α}. On the other hand, the Lq-spectrum of µp is given by

τ(µp, q) = τ(q) := lim inf
t→0

log sup
∑

i µp(B(xi, t))
q

log t

for each q ∈ R, where the supremum is over disjoint families of closed balls with
centres xi ∈ K.

An important objective of multifractal analysis is to understand the relationship
between the Lq-spectrum of the measure µp, and the dimension spectrum dimHK(α).
A heuristic relationship between τ(q) and dimH K(α), known as the multifractal
formalism, was introduced by Halsey et al. [HJK+86]. The multifractal formalism
states, roughly speaking, that the dimension spectrum can be computed as the
concave conjugate of τ(q), i.e.

dimH K(α) = τ ∗(α) := inf
q∈R

{qα− τ(q)}

for any α in the domain of τ ∗(α); see Definition 4.2 for a complete definition in our
setting. This concave conjugate relationship has been studied by many authors (see
[CM92; Fen03a; Fen09; FL09; FLW05; HJK+86; Lau95; LN99; Pat97; PW97; Shm05]).
As a particularly elegant example, it has been verified in general for iterated
function systems satisfying the strong separation condition (Si(K) ∩ Sj(K) ̸= ∅
if and only if i = j) [CM92]. This separation requirement has been relaxed to
the open set condition [Hut81] and the concave conjugate relationship has been
verified [AP96; Pat97; PW97]. In both cases, τ(q) is differentiable for all q ∈ R and
is determined uniquely by the implicit formula

∑
i∈I p

q
i r

−τ(q)
i = 1.

However, when the open set condition fails, outside specialized analysis of
some families of examples (for example, Bernoulli convolutions associated with
the unique positive root of the polynomial xk−xk−1−· · ·−x−1 [Fen05]), there has
been much less progress on verifying the multifractal formalism at all q ∈ R. For
q ≥ 0, the function x 7→ xq is non-decreasing so the summation in the definition of
τ(q) is dominated by closed balls with large measure. On the other hand, for q < 0,
the summation is dominated by closed balls of small measure. Generally speaking,
understanding the multifractal analysis of measures when q < 0 is substantially
more challenging than the case q ≥ 0. Gaining more information about this case is
our focus in this document.

1.1. The weak separation condition. Notably, neither the strong separation con-
dition nor the open set condition allows for the existence of exact overlaps. We
introduce some notation: let I∗ denote the set of all finite words on I. For
σ = (i1, . . . , in) ∈ I∗, write Sσ = Si1 ◦ · · · ◦ Sin , rσ = ri1 · · · rin and, if n ≥ 1,
σ− = (i1, . . . , in−1). By exact overlaps we mean the existence of words σ ̸= τ ∈ I∗

such that Sσ = Sτ . To study examples allowing exact overlaps while still main-
taining separation of non-overlapping words, Lau and Ngai introduced the weak
separation condition and studied basic conditions under which the multifractal
formalism holds [LN99]. For any t > 0 and Borel set E ⊆ R, define

Λt(E) = {σ ∈ I∗ : rσ < t ≤ rσ− , Sσ(K) ∩ E ̸= ∅}.
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Then the weak separation condition is equivalent to requiring that

(1.1) sup
x∈R,t>0

#{Sσ : σ ∈ Λt(U(x, t))} < ∞

where #X denotes the cardinality of a set X and U(x, t) is the open ball about
x with radius t. Note that the definition only considers functions Sσ rather than
the words σ so as to allow exact overlaps. To see an equivalent formulation with
respect to exact overlaps or the equivalence with the original definition of Lau and
Ngai, see [Zer96, Theorem 1].

Under the weak separation condition, verification of the multifractal formalism
is subtle. One of the earliest examples of exceptional behaviour is with respect
to self-similar measures of the system of Bernoulli convolutions {x 7→ ρx, x 7→
ρx + (1 − ρ)} where the contraction ratio ρ is the reciprocal of the golden mean.
In this case, the Lq-spectrum τ(q) has a phase transition, or a point where τ(q) is
not differentiable. Nevertheless, the multifractal formalism still holds and τ(q) is
analytic for other values of q [Fen05]. Another example of exceptional behaviour is
the 3-fold convolution of the uniform Cantor measure. In this case, it was observed
that the set of attainable local dimensions is not an interval and the multifractal
formalism fails [HL01]. The problem here is, in some sense, that the measure µp is
too small at certain points in K. This measure, and other related measures, were
studied in detail [FLW05; HHS21a; LW05; Shm05] and a modified multifractal
formalism was proven therein. In these cases, the failure occurs at some point
q < 0.

In an important paper, Feng and Lau [FL09] obtain deep results about the
multifractal formalism under the weak separation condition. Using a subtle
Moran construction [FLW02], they prove that the multifractal formalism holds for
any value q ≥ 0, and for q < 0, they give a modified multifractal formalism by
considering suitable restrictions to an open ball U0 which attains the supremum
in the definition of the weak separation condition (1.1). Unfortunately, this result
does not directly give information on the validity of the multifractal formalism
for values q < 0. In some sense, the restriction avoids the breakdown of the
multifractal formalism by avoiding points in K where the measure is too small.

To extend this perspective, we develop some new ideas. Even in regions where
the overlap is not dense (i.e. away from any maximal open ball U0), through a gen-
eral graph construction, we will show that the measure may be “combinatorially
linked” to regions with high density where the multifractal formalism holds. For
example, consider the IFS given by the maps

S1(x) = ρx S2(x) = rx+ ρ(1− r) S3(x) = rx+ 1− r(1.2)

where ρ > 0, r > 0 satisfy ρ + 2r − ρr ≤ 1. This IFS was first studied by Lau
and Wang [LW04] and satisfies the weak separation condition. In §5.3.3, we show
that the maximal open sets U0 can never contain the point 1 in the self-similar
set, which is a phenomenon similar to the situation of the Cantor convolution.
Despite this, we can prove (as a consequence of our more general results) that
the multifractal formalism still holds for the measure µp, without restriction to a
subset and with any probabilities. Our main goal in this paper is to provide a new,
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natural perspective for understanding the failure of the multifractal formalism,
and to provide combinatorial conditions under which the multifractal formalism
holds or in which one might suspect that fails.

Our starting point is the net interval construction of Feng [Fen03b]. In that
document, for iterated function systems of the form {x 7→ rx + di}i∈I with
0 < r < 1 satisfying a combinatorial overlap condition known as the finite type
condition [NW01], he obtains formulas for the values of µp(∆) on families of inter-
vals Fn as products of non-negative matrices. He then uses properties of matrix
products to verify differentiability of the Lq-spectrum (and thus the multifractal
formalism by the prior work of Lau and Ngai [LN99]) for values q > 0. Using
some different perspectives but with the same underlying approach, he proves a
modified multifractal formalism for values of q < 0 [Fen09].

In recent work, following the techniques of Feng and operating in the same
setting, Hare, Hare, and various collaborators [HHN18; HHM16] define a finite
graph called the transition graph corresponding to the IFS. Then they determine
that the set of local dimensions at special points in K called interior essential points
form a closed interval, and show that the failure for the set of local dimensions
to be a closed interval is determined by the existence of certain combinatorial
structures in the transition graph called non-essential loop classes.

However, as observed by Testud [Tes06], when the IFS does not have a com-
mon contraction ratio or a similar property (for example, log ri/ log rj ∈ Q for all
i, j [HHS21b]), one cannot apply Feng’s net interval construction in a natural way.

1.2. Summary of main results. Our first contribution is a generalization of the
net interval construction to apply to any IFS of similarities. We determine that the
distribution of µp on certain intervals which we call net intervals is determined
by a local overlap structure which we call the neighbour set of the net interval
(see [HHR21] for the first appearance of this construction). Our first key ob-
servations, Lemma 2.3 and Theorem 2.8, are that the neighbour set completely
determines the local geometry of the attractor K and the distribution of the mea-
sure µp (up to fixed constants of comparability). This allows us in §2.4 to construct
a countable directed graph which we call the transition graph of the IFS, where the
vertices are the distinct neighbour sets. Then in §2.5, we associate to each edge of
the transition graph a non-negative matrices called a transition matrix such that
the distribution of µp on net intervals is given by products of these non-negative
matrices. Since we do not make any assumptions on the contraction ratios, we
introduce two simple but important ideas: the notion of the transition generation
(Definition 2.4), and the notion of the length of an edge (Definition 2.9). These
definitions resolve the issues with the original net interval construction recognized
above.

In §3, we turn our attention to the IFSs satisfying the weak separation condition.
In particular, we prove the existence of a relatively open subset Kess ⊆ K called the
set of interior essential points, and a corresponding subgraph of the transition graph
called the essential class on which the self-similar measure has certain important
regularity properties (Lemma 3.10). We call a net interval essential if its neighbour
set is a vertex in the essential class. We determine that the set of interior essential
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points is large in two different senses:

Theorem 1.1. Let {Si}i∈I be an IFS satisfying the weak separation condition.
(i) If U0 is any open set which attains the supremum in (1.1), then K ∩ U0 is contained

in a finite union of essential net intervals. In particular, K ∩ U0 ⊆ Kess.
(ii) If µp is any associated self-similar measure, then µp(K \Kess) = 0.

See Proposition 3.7 and Theorem 3.11 for proofs of these facts.
We also obtain dimensional results at certain points in K called periodic points,

an idea introduced by Hare, Hare, and Matthews. In Proposition 3.16, we prove
that an elegant formula holds for the local dimensions at such points, and in
Theorem 4.1 we show that the sets of local dimensions at periodic points are dense
in the sets of upper and lower local dimensions at points in Kess. This generalizes
a pre-existing result [HHN18, Corollary 3.15] to the weak separation case.

We then focus on understanding the multifractal formalism from the perspec-
tive of the essential class. We introduce the notion of weak regularity in Defini-
tion 4.3. Our main result in this section is the following (see Theorem 4.11 for a
complete statement and proof):

Theorem 1.2. Let {Si}i∈I be an IFS satisfying the weak separation condition and let µp

be an associated self-similar measure. Let E = ∆1 ∪ · · · ∪∆n be a finite union of essential
net intervals such that E ∩K is weakly regular. Then ν = µp|E satisfies the multifractal
formalism and

(1.3) {dimloc ν(x) : x ∈ supp ν} = {dimloc µp(x) : x ∈ Kess}.

Moreover, the values of τ(ν, q) do not depend on the choice of ∆1, . . . ,∆n and for q ≥ 0,
τ(µp, q) = τ(ν, q).

Our verification of this modified multifractal formalism begins with [FL09,
Theorem 1.2], but then uses the matrix product structure of the transition graph to
move the weight of the measure from the sets U0 to any net interval in the essential
class. We note some minor improvements: rather than considering restrictions of
the Lq-spectrum to an open set, we obtain the results as a restriction to a compact
subset ∆1 ∪ · · · ∪∆n, where this subset can strictly contain a neighbourhood of any
open set U0 attaining the maximum in (1.1) (combine Theorem 1.1 and Lemma 4.6).

In fact, our matrix product structure provides a more general perspective for
understanding the quasi-product property of Feng and Lau [FL09]; a natural
analogue holds in our setting where their set Ω is replaced by a set of net intervals
which have the neighbour of a fixed essential net interval. As a result, a more direct
proof of Theorem 1.2 is possible. However, many details of this proof overlap with
the approach of Feng and Lau, so we do not include this approach.

Combining this result with Theorem 1.1, we prove the following modified
multifractal formalism for any IFS satisfying the weak separation condition:

Corollary 1.3. Let {Si}i∈I be an IFS satisfying the weak separation condition with
associated self-similar measure µp. Then there exists a sequence of compact sets (Km)

∞
m=1

with Km ⊆ Km+1 ⊆ K for each m ∈ N such that
(i) limm→∞ µp(Km) = 1,
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(ii) each µm := µp|Km satisfies the multifractal formalism, and
(iii) τ(µm, q) and D(µm) do not depend on the index m.

We note the similarity of this result to a result of Feng [Fen09, Theorem 1.2], which
follows from general results about the multifractal formalism of certain matrix-
valued functions satisfying an irreducibility condition. However, the techniques
used therein only apply naturally in the finite type case for IFSs of the form
{x 7→ rx+ di}i∈I .

We also obtain the following important corollary:

Corollary 1.4. Let {Si}i∈I be an IFS satisfying the weak separation condition with
transition graph G. Suppose there is a bound on the maximum length of a path with no
vertices in the essential class. Then any associated measure µp satisfies the multifractal
formalism.

In particular, suppose G is finite. In this situation, the only mechanism for the
failure of the multifractal formalism is the existence of a cycle (a path in the
transition graph which begins and ends at the same vertex) which is not contained
in the essential class. This gives a combinatorial condition which guarantees that
the multifractal formalism holds. In this situation, it is possible to write a finite
algorithm to determine whether such a cycle exists.

In particular, in Theorem 5.7, we apply this to the family of IFS defined in (1.2):

Corollary 1.5. Let {Si}3i=1 be the IFS defined in (1.2). Then for any probability weights
p = (pi)

3
i=1, the associated self-similar measure µp satisfies the complete multifractal

formalism.

To the best knowledge of the author, this is the first example of an IFS with exact
overlaps and without logarithmically commensurable contraction ratios for which
the complete multifractal formalism is proven to hold. Understanding failure of
the multifractal formalism is based critically on understanding the properties of
cycles in the transition graph outside the essential class.

By combining our results with the work of Deng and Ngai [DN17], we can
also gain information about differentiability of the Lq-spectrum. In a slightly
specialized case, [DN17, Theorem 1.2] states that, for probabilities p2 > p3,

f(α) := dimH{x ∈ K : dimloc µp(x) = α}

is the concave conjugate of a differentiable function. Combining this with Corol-
lary 1.4 and involutivity of concave conjugation, we obtain the following result:

Corollary 1.6. Let {Si}3i=1 be the IFS defined in (1.2). Then if p2 > p3, the Lq-spectrum
τ(µp, q) is differentiable for any q ∈ R.

This answers some of the questions raised in [DN17].
Finally, in §5, we investigate some specific families of IFSs to illustrate these

results; notably, we give an in-depth analysis of the IFS given in (1.2). In fact,
every example in that section has a finite transition graph: this is equivalent to the
generalized finite condition of Lau and Ngai [LN07] holding with respect to an
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open interval (see [HHR21, Theorem 3.4] and Remark 5.2 for a proof). Moreover,
when K is a convex set, a recent result gives that the weak separation condition
is equivalent to the finiteness of the transition graph [HHR21, Theorem 4.4] (see
also [Fen16]). In general, the author believes this to be true without any convexity
assumption on K:

Conjecture 1.7. Let {Si}i∈I be an IFS in R with transition graph G. Then {Si}i∈I
satisfies the weak separation condition if and only if G is finite.

The results obtained in this paper under the weak separation condition, and the
similar strength to results proven under various finite type conditions, provide
some more evidence towards this equivalence in general.

1.3. Limitations and future work. We note here that the Corollary 1.4 is not
a dichotomy. While the non-existence of cycles outside the transition graph
guarantees that the multifractal formalism holds, the converse need not hold.
We have examples of measures satisfying the open set condition (with respect
to an open set that is not an open interval) with cycles outside the essential
class, while the open set condition guarantees that the multifractal formalism
does hold. This situation is likely a by-product of the net interval construction,
since our perspective is always with respect to images of the entire interval [0, 1].
However, there are also cases such as the Bernoulli measure associated with the
IFS {x 7→ ρx, x 7→ ρx+(1−ρ)} where 1/ρ is the Golden mean. In this situation, the
attractor is the entire interval [0, 1] so that the net interval construction is a natural
choice. Here, even though the Lq-spectrum contains a point of non-differentiability
at some q0 < 0 and contains a cycle not contained in the essential class, the measure
still satisfies the multifractal formalism [Fen05]. These phenomena, and other
related special cases, are studied in recent work of Hare, Hare, and Shen [HHS21a].

More work is needed to address the general case. In [Rut21+], the author
investigates the multifractal analysis of measures when the transition graph is
finite to provide a more detailed understanding of such examples. In particular, we
obtain a greater understanding of the multifractal formalism outside the essential
class as a continuation of our analysis here.

1.4. Notational conventions. We briefly mention here some of the conventions
we use through out the document. Given any set X , we write #X to denote the
cardinality of X . The set R is always the metric space equipped with the usual
Euclidean metric. The set N is the set of natural numbers beginning at 1. The set
B(x, t) is always a closed ball about x with radius t, and U(x, t) denotes the open
ball. Let E,F ⊆ R be Borel sets. We denote by diam(E) = sup{|x− y| : x, y ∈ E}
and dist(E,F ) = inf{|x− y| : x ∈ E, y ∈ F}. Given δ > 0, we write E(δ) = {x ∈ R :
dist(x,E) ≤ δ}. By E◦, we mean the topological interior of E.

Boldface quantities are typically vectors. If M is a square matrix, we denote
by sp(M) the spectral radius of M and ∥M∥ =

∑
i,j |Mi,j| the matrix 1-norm. If v,

w are vectors with the same dimension, we write v ≼ w if vi ≤ wi for each i. All
matrices in this document are non-negative.
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Given families of real numbers (ai)i∈I and (bi)i∈I , we write ai ≍ bi if there exist
constants c1, c2 > 0 such that c1ai ≤ bi ≤ c2ai for all i ∈ I .

The maps {Si}i∈I always denotes an iterated function system. We assume that
#I ≥ 2 and its attractor K is not a singleton. Sets denoted by ∆ are closed intervals
and often net intervals. Indices s, t are used to refer to generations and radii of
open and closed balls. Greek letters σ, τ, ω, ϕ, ξ typically refer to words in I∗. The
Greek η typically refers to a path in the transition graph. The character T refers to
either a transition matrix or, more occasionally, a similarity map, depending on
context.

2. ITERATED FUNCTION SYSTEMS THROUGH NET INTERVALS

2.1. Iterated function systems of similarities in R. Let I be a non-empty finite
index set. By an iterated function system of similarities (IFS) {Si}i∈I we mean a
finite set of similarities

(2.1) Si(x) = rix+ di : R → R for each i ∈ I

with 0 < |ri| < 1. We say that the IFS is (positive) equicontractive if each ri = r > 0.
Each IFS generates a unique non-empty compact set K satisfying

K =
⋃
i∈I

Si(K).

This set K is known as the associated self-similar set. Throughout, we will assume
K is not a singleton. By rescaling and translating the di if necessary, without loss
of generality we may assume the convex hull of K is [0, 1].

Given a probability vector p = (pi)i∈I where pi > 0 and
∑

i∈I pi = 1, there
exists a unique Borel measure µp with suppµp = K satisfying

(2.2) µp(E) =
∑
i∈I

piµp(S
−1
i (E))

for any Borel set E ⊆ K. This measure µp as known as an associated self-similar
measure.

Let I∗ denote the set of all finite words on I. Given σ = (σ1, . . . , σj) ∈ I∗, we
denote

σ− = (σ1, . . . , σj−1), Sσ = Sσ1 ◦ · · · ◦ Sσj
and rσ = rσ1 · · · rσj

.

Given t > 0, put

Λt = {σ ∈ I∗ : |rσ| < t ≤ |rσ−|}.

We refer to the set of σ ∈ Λt as the words of generation t. We remark that in the
literature it is more common to see this defined by the rule |rσ| ≤ t < |rσ−|. The
two choices are essentially equivalent, but this choice is more convenient for our
purposes.
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2.2. Neighbour sets. The notions of net intervals and neighbour sets were in-
troduced in [Fen03b] and [HHS21b]. In [HHR21], these notions were extended
to an arbitrary IFS, and we present those definitions here. We then continue the
discussion to define the children of a net interval, and show in Theorem 2.8 that
the children depend only on the neighbour set of the parent.

Let h1, . . . , hs(t) be the collection of distinct elements of the set {Sσ(0), Sσ(1) :
σ ∈ Λt} listed in strictly ascending order; we refer to this set as the endpoints of
generation t. Set

Ft = {[hj, hj+1] : 1 ≤ j < s(t) and (hj, hj+1) ∩K ̸= ∅}.

Elements of Ft are called net intervals of generation t. Write F =
⋃

t>0Ft to denote
the set of all possible net intervals.

Suppose ∆ ∈ F . We denote by T∆ the unique contraction T∆(x) = rx+ a with
r > 0 such that

T∆([0, 1]) = ∆.

Of course, r = diam(∆) and a is the left endpoint of ∆.

Definition 2.1. We will say that a similarity f(x) = Rx+ a is a neighbour of ∆ ∈ Ft

if there exists some σ ∈ Λt such that Sσ(K) ∩ ∆◦ ̸= ∅ and f = T−1
∆ ◦ Sσ. In this

case, we also say that Sσ generates the neighbour f . The neighbour set of ∆ is the
maximal set

Vt(∆) = {f1, . . . , fm}

where each fi = T−1
∆ ◦ Sσi

is a distinct neighbour of ∆.

Since K =
⋃

σ∈Λt
Sσ(K), every net interval has a non-empty neighbour set.

If σ generates a neighbour of ∆, then Sσ([0, 1]) ⊇ ∆. When the generation of
∆ is implicit, we will simply write V(∆). For notational convenience, we define
the quantity Rmax(∆) = max{|R| : {x 7→ Rx + a} ∈ V(∆)}, which depends only
on V(∆).

Remark 2.2. For an IFS of the form {Si(x) = rx+ di}i∈I where 0 < r < 1 is fixed,
the notion of a neighbour set is related to the characteristic vector of Feng [Fen03b].
We describe the equivalence here.

Let ∆ = [a, b] ∈ Ft be some net interval and let n be such that rn < t ≤ rn−1. Let
σ1, . . . , σm generate distinct neighbours of ∆, so that rσi

= rn for each 1 ≤ i ≤ m.
Then the (reduced) characteristic vector of ∆ (see [Fen03b, Section 2] for notation)
is determined by

ℓn(∆) = r−n diam(∆) Vn(∆) = {r−n(a− Sσi
(0)) : 1 ≤ i ≤ m}.

whereas the neighbour set of ∆ is given by

V(∆) = {T−1
∆ ◦ Sσi

} = {x 7→ Sσi
(x)− a

diam(∆)
}
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= {x 7→ x

r−n diam(∆)
+

Sσi
(0)− a

diam(∆)
}.

Thus, when the IFS has a common positive contraction ratio, our neighbour
set construction can be interpreted directly as a normalized version of Feng’s
characteristic vector.

When the IFS has arbitrary contraction ratios, there is no clear choice of normal-
ization factor analogous to ℓn(∆) that is uniform across all net intervals ∆ ∈ Ft.
This issue is resolved by normalizing directly by diam(∆), but now it is no longer
clear how to define the children of a net interval in a global way. Instead, a
local definition for the children of net intervals, and the analogue of [Fen03b,
Lemma 2.1], are given in §2.3.

Neighbour sets of net intervals are relevant in the sense that they completely
determine the local geometry of K in the net interval, as well as the behaviour of
associated self-similar measures on Borel subsets of the net interval. To be precise,
we have the following lemma:

Lemma 2.3. Let {Si}i∈I be an IFS as in (2.1) with attractor K and associated self-similar
measure µp. Suppose ∆1,∆2 are net intervals with V(∆1) = V(∆2). Then there exists a
surjective similarity g : ∆1 ∩K → ∆2 ∩K and constants c1, c2 > 0 such that if E ⊆ ∆1

is any Borel set,

c1µp(E) ≤ µp(g(E)) ≤ c2µp(E).

Proof. By definition of the neighbour set, if ∆ is any net interval, we have

∆ ∩K =
⋃

f∈V(∆)

(
T∆ ◦ f(K)

)
∩∆.

Set g = T∆2 ◦ T−1
∆1

so that g is clearly a similarity, and applying this observation to
∆1 and ∆2, we have

g(∆1 ∩K) =
⋃

f∈V(∆1)

g(T∆1 ◦ f(K) ∩∆1) =
⋃

f∈V(∆1)

(
g ◦ T∆1 ◦ f(K)

)
∩ g(∆1)

=
⋃

f∈V(∆2)

(
T∆2 ◦ f(K)

)
∩∆2 = ∆2 ∩K.

Thus g is a surjective with the correct image.
We now verify the measure property. By the invariant property of the self-

similar measure (2.2), if ∆ ∈ Ft is any net interval and E ⊆ ∆ is any Borel set,

µp(E) =
∑
σ∈Λt

pσµp ◦ S−1
σ (E) =

∑
f∈V(∆)

µp

(
f−1 ◦ T−1

∆ (E)
) ∑

σ∈Λt
σ generates f

pσ.

Since f is a neighbour of ∆, there is at least one σ generating f . In particular,
say ∆1 ∈ Ft1 and ∆2 ∈ Ft2 , write V(∆1) = V(∆2) = {f1, . . . , fm}, and set for each
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1 ≤ i ≤ m and j = 1, 2

qi,j :=
∑
σ∈Λtj

σ generates fi

pσ > 0.

Set c1 = min{qi,2/qi,1 : 1 ≤ i ≤ m}. We then have for E ⊆ ∆1 that g(E) ⊆ ∆2 so
that

µp(g(E)) =
m∑
i=1

µp

(
f−1
i ◦ T−1

∆2
◦ g(E)

)
qi,2

≥ c1

m∑
i=1

µp

(
f−1
i ◦ T−1

∆1
(E)
)
qi,1 = c1µp(E).

Similarly, we have µp(g(E)) ≤ c2µp(E) where c2 = min{qi,1/qi,2 : 1 ≤ i ≤ m}. □

We will revisit these ideas in §2.5.

2.3. Children of net intervals. Let ∆ ∈ F have neighbour set {f1, . . . , fm}, and for
each i, let Sσi

generate the neighbour fi (recall that this means that Sσi
(K)∩∆◦ ̸= ∅

and fi = T−1
∆ ◦ Sσi

).

Definition 2.4. We define the ancestral generation of ∆, denoted ag(∆), and the
transition generation of ∆, denoted tg(∆), to be positive real values such that

m⋂
i=1

(|rσi
|, |rσ−

i
|] = (tg(∆), ag(∆)].

Note that 0 < tg(∆) ≤ 1; if ∆ = [0, 1], we say ag(∆) = ∞. It is straightforward
to verify that

• tg(∆) = Rmax(∆) · diam(∆),
• t ∈ (tg(∆), ag(∆)],
• for any s ∈ (tg(∆), ag(∆)], ∆ ∈ Fs and Vs(∆) = Vt(∆), and
• if s /∈ (tg(∆), ag(∆)], either ∆ /∈ Fs or Vs(∆) ̸= Vt(∆).
Let t > 0 and ∆ ∈ Ft. Let (∆1, . . . ,∆n) ∈ Ftg(∆) be the distinct net intervals,

ordered from left to right, of generation tg(∆) contained in ∆. Note that either
n > 1 or if n = 1, then V(∆) ̸= V(∆1). Then we call the tuple (∆1, . . . ,∆n) the
children of ∆ ∈ Ft. Note that for any child ∆i of ∆, ag(∆i) = tg(∆).

Similarly, we define the parent of ∆ ∈ Ft to be the net interval ∆̂ ∈ Fs with
s > t where ∆ is a child of ∆̂.

Remark 2.5. One way to think about the children of a net interval is as follows.
Enumerate the points

{∏
i∈I |r

ai
i | : ai ∈ {0} ∪ N

}
in decreasing order (ti)∞i=1. Since

tg(∆) = |rσ| for some σ ∈ I∗, the transitions to new generations must happen at
some ti. However, if ∆ ∈ Ftk , it may not hold that tg(∆) = tk+1. The children are
the net intervals in generation tm where m ≥ k + 1 is minimal such that either
∆ /∈ Ftm or Vtm(∆) ̸= Vtk(∆).

If the IFS is of the form {x 7→ rx+ di}i∈I for some fixed 0 < r < 1 and ∆ ∈ Frn ,
then tg(∆) = rn+1.
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Example 2.6. For a worked example of neighbour set and children computations
of a non-commensurable IFS, see §5.3.

A key feature of the preceding definitions is that, in a sense that will be made
precise, the neighbour set of some net interval ∆ ∈ Fα completely determines the
placement and the neighbour set of each child of the net interval.

Definition 2.7. Suppose ∆ = [a, b] ∈ F has children (∆1, . . . ,∆n) in generation
tg(∆). For some fixed child ∆i = [ai, bi], we define the position index q(∆,∆i) =
(ai − a)/ diam(∆).

One purpose of the position index is to distinguish the children of ∆ which have
the same neighbour set.

We have the following basic result. The insight behind this result is straightfor-
ward. The children of a net interval are determined precisely by the words which
generate the neighbours of maximal length. Up to normalization by the position
of ∆, these correspond uniquely to the neighbours of ∆ with maximal contraction
factor.

Theorem 2.8. Let {Si}i∈I be an arbitrary IFS. Let ∆ ∈ Ft have children (∆1, . . . ,∆n)
in Ftg(∆). Then for any ∆′ ∈ Fs with V(∆) = V(∆′) and children (∆′

1, . . . ,∆
′
n′) in

Ftg(∆′), we have that n = n′ and for any 1 ≤ i ≤ n,
(i) V(∆′

i) = V(∆i),
(ii) q(∆′,∆′

i) = q(∆,∆i),
(iii) diam(∆′

i)

diam(∆′)
= diam(∆i)

diam(∆)
, and

(iv) tg(∆i)
tg(∆)

=
tg(∆′

i)

tg(∆i)
.

Proof. Given a map f(x) = rx+ d, we set R(f) = |r|.
Write V(∆′) = V(∆) = {f1, . . . , fm}, and let

W ′ = {T∆′ ◦ fi : R(fi) = Rmax(∆
′), 1 ≤ i ≤ m}

W = {T∆ ◦ fi : R(fi) = Rmax(∆), 1 ≤ i ≤ m}

denote the corresponding sets of neighbours corresponding to functions with
maximal contraction factor, where Rmax(∆

′) = Rmax(∆). Then let

C ′ =
{
Sτ : τ ∈ Λtg(∆′), Sτ (K) ∩ (∆′)◦ ̸= ∅

}
C =

{
Sτ : τ ∈ Λtg(∆), Sτ (K) ∩∆◦ ̸= ∅

}
.

In other words, C is the set of words of generation tg(∆) which contribute to some
child of ∆, and similarly for ∆′. Using the observation that the only new words
are those which are one-level descendants of those which generate neighbours of
maximal length, we have

C = {f ◦ Sj : f ∈ W , f ◦ Sj(K) ∩∆◦ ̸= ∅} ∪ {T−1
∆ ◦ fi : R(fi) ̸= Rmax(∆)}

= {T∆ ◦ T−1
∆′ ◦ f : f ∈ C ′}.(2.3)

Note that, in the above set of equalities, we use the fact that for f ∈ W

f ◦ Sj(K) ∩∆◦ ̸= ∅ ⇐⇒ T−1
∆ ◦ f ◦ Sj(K) ∩ (0, 1) ̸= ∅
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⇐⇒ T∆′ ◦ T−1
∆ ◦ f ◦ Sj(K) ∩ (∆′)◦ ̸= ∅

where T∆′ ◦ T−1
∆ ◦ f ∈ W ′.

Write ∆ = [a, b] and ∆′ = [a′, b′]. Now consider the set H = {a, b} ∪ {f(0), f(1) :
f ∈ C} ∩ ∆ so that H is the set of all endpoints of generation tg(∆) contained
in ∆. Then if H ′ = {a′, b′} ∪ {f(0), f(1) : f ∈ C ′} ∩ ∆′, we observe by (2.3) that
T−1
∆′ (H ′) = T−1

∆ (H). Let a = h1 < · · · < hk+1 = b denote the ordered elements of
H and a′ = h′

1 < · · · < h′
k+1 = b′ the ordered elements of H ′ where k = |H| − 1 =

|H ′| − 1. By Lemma 2.3, (hi, hi+1) ∩K ̸= ∅ if and only if (h′
i, h

′
i+1) ∩K ̸= ∅. Thus

the children of ∆ are {[hi, hi+1] : (hi, hi+1) ∩ K ̸= ∅} and the children of ∆′ are
{T∆′ ◦ T−1

∆ ([hi, hi+1]) : (hi, hi+1) ∩K ̸= ∅}, so k = n = n′.
Now fix some 1 ≤ i ≤ n. Note that T∆ ◦ T−1

∆′ (∆′
i) = ∆i so that T−1

∆i
◦ T∆ ◦ T−1

∆′ =

T−1
∆′

i
.

(i) By direct computation,

V(∆i) =
{
T−1
∆i

◦ f : f ∈ C, f(K) ∩∆◦
i ̸= ∅

}
=
{
T−1
∆i

◦ T∆ ◦ T−1
∆′ ◦ f : f ∈ C ′,

T∆ ◦ T−1
∆′ ◦ f(K) ∩

(
T∆ ◦ T−1

∆′ (∆
′
i)
)◦ ̸= ∅

}
=
{
T−1
∆′

i
◦ f : f ∈ C ′, f(K) ∩ (∆′

i)
◦ ̸= ∅

}
= V(∆′

i)

(ii) Since the T∆ are isometries, q(∆,∆i) =
hi−h1

diam(∆)
= T−1

∆ (hi) since T−1
∆ (h1) = 0.

Then the result follows since T−1
∆ (hi) = T−1

∆′ (h′
i).

(iii) We have

diam(∆i)

diam(∆)
= diam(T−1

∆ (∆i)) = diam(T−1
∆′ (∆

′
i)) =

diam(∆′
i)

diam(∆′)

(iv) Recall that for an arbitrary net interval, tg(∆0) = Rmax(∆0) · diam(∆0) where
Rmax(∆0) depends only on V(∆0). Apply (i) and (iii).

We thus have the desired result. □

2.4. The transition graph of an iterated function system. In the context of Theo-
rem 2.8, to understand the behaviour of the IFS, it is in a sense sufficient to track
the behaviour of the neighbour sets. Thus, we construct the transition graph of
the IFS. The transition graph is a directed graph G({Si}i∈I), possibly with loops
and multiple edges, (denoted by G when the IFS is clear from the context) de-
fined as follows. The vertex set of G, denoted V (G), is {V(∆) : ∆ ∈ F}, the set
of distinct neighbour sets. The edge set of G, denoted E(G), is a set of triples
(v1, v2, q) where v1 is the source vertex, v2 is the target vertex, and q is the edge
label to distinguish multiple edges. The edges are given as follows: for each net
interval ∆ ∈ Ft with children (∆1, . . . ,∆m) and for each i, we introduce an edge
e = (Vt(∆),Vtg(∆)(∆i), q(∆,∆i)). By Theorem 2.8, this construction is well-defined
since it depends only on the neighbour set of ∆.
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An (admissible) path η in G is a sequence of edges η = (e1, . . . , en) in G where the
target of ei is the source of ei+1. A path in G is a cycle if the path begins and ends at
the same vertex.

We can encode the behaviour of the IFS symbolically using the transition graph.
Given ∆ ∈ Ft, consider the sequence (∆0, . . . ,∆n) where ∆0 = [0, 1], ∆n = ∆,
and each ∆i is a child of ∆i−1. Then the symbolic representation of ∆ is the path
η = (e1, . . . , en) of G where for each 1 ≤ i ≤ n

ei =
(
V(∆i−1),V(∆i), q(∆i−1,∆i)

)
.

Conversely, if η is any admissible path, we say that (∆i)
k
i=0 is a (net interval)

realization of η if
• each ∆i is a child of ∆i−1, and
• each ei = (V(∆i−1),V(∆i), q(∆i−1,∆i)).

By construction, every admissible path has a net interval realization.
Now let x ∈ K be arbitrary and let (∆i)

∞
i=0 be a sequence of nested intervals

where ∆0 = [0, 1] and ∆i+1 a child of ∆i and {x} =
⋂∞

i=1 ∆i. The symbolic repre-
sentation of x corresponding to sequence (∆i)

∞
i=0 is the infinite path (ei)

∞
i=1 where

for each n, (e1, . . . , en) is the symbolic representation of ∆n. The symbolic repre-
sentation uniquely determines x, but if x is an endpoint of some net interval, it
can happen that there are two distinct symbolic representations.

Suppose {Si}i∈I is of the form {x 7→ rx + di}i∈I where 0 < r < 1. Then if
∆ ∈ Ft is any net interval with symbolic representation η = (e1, . . . , en), tg(∆) = rn

and rn < t ≤ rn−1. In other words, given the symbolic representation, we can
approximate the generation of ∆.

However, when the IFS is not of this form, paths with the same length can result
in net intervals in substantially different generations, and if the contraction ratios
are not logarithmically commensurable (i.e. log ri/ log rj ∈ Q for any i, j ∈ I),
there is no way to resolve this in a uniform way. Thus in order to approximate the
change in generation along a path in the transition graph, it is necessary to assign
distinct values to the edges in the transition graph.

Definition 2.9. Let G be the transition graph of an IFS. We define the edge length
function L : E(G) → (0, 1) as follows. For a particular edge e, let the source and
target be given by v1 and v2, where vi = V(∆i) for some ∆1 the parent of ∆2, and
define L(e) = tg(∆2)/ tg(∆1).

This function is well-defined by Theorem 2.8. When η = (e1, . . . , en) is an admissi-
ble path, we say L(η) = L(e1) · · ·L(en).

Remark 2.10. If {Si}i∈I is of the form {x 7→ rx + di}i∈I where 0 < r < 1, then
L(e) = r for any edge e ∈ E(G).

The main point here is that if ∆ ∈ Ft is any net interval with symbolic repre-
sentation η, then L(η) ≍ t with constants of comparability not depending on ∆.
While the above choice of the length for an edge is not unique with this property,
a straightforward argument shows that any such function must agree with L on
any cycle.
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2.5. Encoding the invariant measure by the transition graph. Given an IFS
{Si}i∈I with a corresponding invariant measure µp, we are interested in formulas
for computing or approximating µp(E) where E ⊆ K is an arbitrary Borel set.
When {Si}i∈I satisfies the strong separation condition (that is, for i ̸= j, Si(K) and
Sj(K) are disjoint), this is straightforward since µp(Sσ(K)) = pσ. However, when
images of K overlap, such a formula no longer holds.

The net interval construction can be thought of as a way of converting the
behaviour of the IFS on overlapping images of K into behaviour on net intervals,
which are disjoint except on a countable set (which has µp-measure 0). It turns
out that one may also encode the dynamics of the invariant measure µp using
products of matrices. This technique was developed in the equicontractive case for
IFS of the form {x 7→ rx+ di}i∈I with 0 < r < 1 by Feng [Fen03b], and extended
to IFS which satisfy the finite type condition [HHS21b]. Using similar techniques,
we describe here how to generalize this construction to an arbitrary IFS.

Let {Si}i∈I be an IFS and µp the self similar measure associated to probabilities
{pi}i∈I . The main mechanism to compute the approximate measure of net intervals
is through transition matrices. Recall that G has vertex set V (G) = {V(∆) : ∆ ∈ F}.
Fix some total ordering on the set of all neighbours {f : f ∈ V(∆),∆ ∈ F}.

Let e ∈ E(G) be a fixed edge with source v1 and target v2. Suppose ∆1 ⊇ ∆2 are
net intervals such that ∆1 is the parent of ∆2 and e = (V(∆1),V(∆2), q(∆1,∆2)).
Suppose the neighbour sets are given by V(∆1) = {f1, . . . , fm} and V(∆2) =
{g1, . . . , gn} where f1 < · · · < fm and g1 < · · · < gn. We then define the transition
matrix T (e) as the non-negative m× n matrix given by

(2.4) T (e)i,j =
µp(g

−1
j ((0, 1))

µp(f
−1
i ((0, 1))

· pℓ

if there exists an index ℓ ∈ I such that fi is generated by σ and gj is generated
by σℓ; otherwise, set T (e)i,j = 0. This is well-defined since a neighbour f has
f−1((0, 1)) ∩K ̸= ∅ by definition. Recall that if σ′ generates any neighbour of ∆2,
then necessarily σ′ = σℓ for some σ which generates a neighbour of ∆1; thus, every
column of T (e) has a positive entry. However, it may not hold that each row of
T (e) has a positive entry.

It is clear from Theorem 2.8 that this definition depends only on the edge e. If
η = (e1, . . . , en) is an admissible path, we define T (η) = T (e1) · · ·T (en).

Example 2.11. See §5.3 and Figure 1 for a complete transition graph example.

Throughout, we will denote by ∥T∥ =
∑

i,j |Tij| to denote the matrix 1-norm.
Suppose ∆ ∈ Ft is an arbitrary net interval. From the defining identity of the
self-similar measure,

µp(∆) =
∑
σ∈Λt

pσµp(S
−1
σ (∆))

where, since µp is non-atomic, the summation may be taken over σ such that
S−1
σ (∆◦) ∩ K is non-empty. Note that S−1

σ (∆◦) = S−1
σ ◦ T∆((0, 1)) = f−1((0, 1))
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where f ∈ V(∆). We thus have

(2.5) µp(∆) =
∑

f∈V(∆)

µp(f
−1((0, 1)))

∑
σ∈Λt

σ generates f

pσ.

Let V(∆) = {f1, . . . , fm} with f1 < · · · < fm; then, we denote the vector form of µp

by Qp(∆) = (q1, . . . , qm) where

qi = µp(f
−1
i ((0, 1)))

∑
σ∈Λt

σ generates fi

pσ.

In particular, Qp(∆) is a strictly positive vector for any ∆, and µp(∆) = ∥Qp(∆)∥.
With this notation, we have the following theorem:

Theorem 2.12. Let {Si}i∈I have associated self-similar measure µp. If η is any admissible
path realized by (∆i)

m
i=0,

Qp(∆0)T (η) = Qp(∆m).

Proof. Suppose ∆0 ∈ Ft and ∆m ∈ Fs. Say V(∆0) = {f1, . . . , fℓ} with f1 <
· · · < fℓ and V(∆m) = {g1, . . . , gm} with g1 < · · · < gm. For each i, assume τi
generates the neighbour fi, and set Aij = {ω : τiω ∈ Λs, τiω generates gj}. Then
for any 1 ≤ j ≤ m, we have

(
Qp(∆0)T (η)

)
j
=

ℓ∑
i=1

µp(f
−1
i ((0, 1)))

( ∑
σ∈Λt

σ generates fi

pσ

)
·
(∑
ω∈Aij

µp(g
−1
j ((0, 1))

µp(f
−1
i ((0, 1))

pω

)

= µp(g
−1
j ((0, 1)))

ℓ∑
i=1

( ∑
σ∈Λt

σ generates fi

pσ

)
·
(∑
ω∈Aij

pω

)
= µp(g

−1
j ((0, 1)))

∑
ω∈Λs

ω generates gj

pω

so that Qp(∆0)T (η) = Qp(∆m). □

3. ITERATED FUNCTION SYSTEMS SATISFYING THE WEAK

SEPARATION CONDITION

We now focus our attention on self-similar measures associated with IFSs sat-
isfying the weak separation condition. We give a definition which is slightly
different than the original [LN99], but is known to be equivalent when K is not a
singleton [Zer96]. Given a Borel set E ⊂ K and t > 0, we define

Λt(E) = {σ ∈ Λt : Sσ(K) ∩ E ̸= ∅}
St(E) = {Sσ : σ ∈ Λt(E)}

Let U(x, t) denote the open ball about x with radius t.



18 RUTAR

Definition 3.1. We say that the IFS {Si}i∈I satisfies the weak separation condition if

(3.1) sup
x∈R,t>0

#St(U(x, t)) < ∞.

We can obtain an equivalent formulation of the weak separation condition in terms
of a variant of the neighbour set which we call the covering neighbour set. Given a
net interval ∆ ∈ Ft, we write Vc(∆) = {T−1

∆ ◦ Sσ : σ ∈ Λt, Sσ([0, 1]) ⊇ ∆}. We refer
to elements of Vc(∆) as covering neighbours. Notably, we omit the requirement that
a neighbour f ∈ Vc(∆) has f(K) ∩ (0, 1) ̸= ∅.

Remark 3.2. We always have V(∆) ⊆ Vc(∆) with strict inequality possible. More-
over, we note that if ∆ and ∆′ are any net intervals with Vc(∆) = Vc(∆′), then
necessarily V(∆) = V(∆′) following similar arguments to Lemma 2.3 and Theo-
rem 2.8. Note that the covering neighbour set is taken as the definition of neighbour
set in [HHR21].

We have the following characterization, which is [HHR21, Proposition 4.3]:

Proposition 3.3 ([HHR21]). The IFS {Si}i∈I satisfies the weak separation condition if
and only if

sup
∆∈F

#Vc(∆) < ∞.

Net intervals for which #Vc(∆) attain the supremum in Proposition 3.3 will play
an important role in our analysis in this section.

3.1. The essential class of the transition graph. Let {Si}i∈I be an IFS with associ-
ated transition graph G. Recall that in a directed graph G, an induced subgraph
G ′ is a subgraph for which there exists some set of vertices H ⊆ V (G) such that G ′

has vertex set H and edge set composed of every outgoing edge from a vertex in
H which connects to another vertex in H .

Definition 3.4. An essential class of G is an induced subgraph G ′ of G such that
(i) for any v, v′ ∈ G ′, there exists a path from v to v′, and

(ii) if v ∈ G and v′ ∈ G ′ and there is a path from v′ to v, then v ∈ G ′.

In a finite graph, there is always at least one essential class [Sen81, Lemma 1.1]. In
an infinite graph, there need not be an essential class; moreover, the essential class,
if it exists, need not be finite. When G has exactly one essential class, we denote it
by Gess.

We have the following basic observation. The proof of this result is similar to
the idea in [HHR21, Lemma 4.2], but we reiterate the aspects of the proof that we
need here for clarity.

Proposition 3.5. Let {Si}i∈I be an IFS satisfying the weak separation condition. Then
its transition graph G has a unique essential class.

Proof. It suffices to show that there exists some vertex v such that if w is any
other vertex, there exists an admissible path from w to v. Then the essential class
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is the set of all vertices v′ for which there is a path from v to v′. By Proposition 3.3,
there exists some t > 0 and net interval ∆0 ∈ Ft such that #Vc(∆0) is maximal; let
v := V(∆0).

Now, let w ∈ V (G) be arbitrary and ∆ ∈ F such that V(∆) = w. Since
∆◦ ∩ K ̸= ∅, there exists some σ ∈ I∗ such that Sσ(K) ⊆ ∆ and rσ > 0. Set
γ = rσ · t and let ∆1 := Sσ(∆0)

Let ∆0 = [a, b] have covering neighbours generated by words {ω1, . . . , ωm} with
ωi ∈ Λt. By definition of γ, {σω1, . . . , σωm} are words of generation Λγ . Note that
(∆1)

◦∩K ̸= ∅ and that the endpoints of ∆1 are of the form Sσζ(z) where z ∈ {0, 1}
and ζ ∈ Λt, so that σζ ∈ Λγ . In particular, if ∆1 /∈ Fγ , then there exists some τ ∈ Λγ

such that Sτ /∈ {Sσω1 , . . . , Sσωm} and Sτ ([0, 1]) ⊇ ∆1. But then there exists some
∆2 ∈ Fγ with ∆2 ⊆ ∆1 ∩ Sτ ([0, 1]), where ∆2 has distinct covering neighbours
generated by {ω1, . . . , ωm} ∪ {τ}, contradicting the maximality of #Vc(∆0).

Thus ∆1 is in fact a net interval of generation γ. Moreover, since rσ > 0, we
have T∆1 = Sσ ◦ T∆0 , so that

Vc(∆1) = {T−1
∆1

◦ Sσωi
}mi=1 = {T−1

∆0
◦ S−1

σ ◦ Sσ ◦ Sωi
}mi=1 = Vc(∆0).

Thus by Remark 3.2, we have V(∆1) = v and ∆1 ⊆ ∆, so that there exists a path
from V(∆) to V(∆1), as claimed. □

Definition 3.6. We say that a point x ∈ K is an essential point if for some symbolic
representation (ej)

∞
j=1 of x, there exists some N ∈ N so that for all k ≥ N , ek ∈

E(Gess). We say that a point x ∈ K is an interior essential point if every symbolic
representation has this property. We denote the set of all interior essential points
by Kess. We say a net interval ∆ ∈ F is an essential net interval if V(∆) ∈ V (Gess).

If ∆ is an essential net interval, then ∆◦ ∩K ⊆ Kess. Of course, a given path (ej)
∞
j=1

is eventually in the essential class if and only if a single edge is in the essential
class. One may verify that the set of interior essential points is the topological
interior of the set of essential points; in particular, the essential points form an
open set in K. Interior essential points play an important role in the multifractal
analysis of self-similar measures under the weak separation condition.

In the next proposition, we observe that interior essential points are abundant.

Proposition 3.7. Let {Si}i∈I be an IFS satisfying the weak separation condition. Let
U(x0, t0) be any open ball which attains the maximal value in (3.1). Then the following
hold:

(i) If σ ∈ I∗ is arbitrary, then Sσ(U(x0, t0)) also attains the maximal value in (3.1).
(ii) U(x0, t0) ∩K is contained in a finite union of essential net intervals. In particular,

U(x0, t0) ∩K ⊆ Kess.

Proof. To see that Sσ(U(x0, t0)) also attains the maximal value in (3.1), if

St0(U(x0, t0)) = {Sϕ1 , . . . , Sϕm},

then Sσϕi
∈ S|rσ |t0(Sσ(U(x0, t0))) for each i and #S|rσ |t0(Sσ(U(x0, t0))) ≥ m. Then

equality holds by maximality of m.
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We now see (ii). By definition of net intervals, we know that for any t > 0,
U(x0, t0) ∩ K is contained in a finite union of net intervals of generation t. In
particular, it suffices to show that there is some t1 > 0 such the set

{∆ ∈ Ft1 : ∆ ∩ U(x0, t0) ̸= ∅}

is composed only of essential net intervals. Let ∆0 be a fixed essential net interval
and let σ0 ∈ I∗ have rσ0 > 0 and Sσ0([0, 1]) ⊆ ∆0. As argued above, Sσ0(U(x0, t0))
also attains the maximal value in (3.1). Let

H = {Sσ : σ ∈ Λrσ0 t0
, Sσ(K) ∩ Sσ0(U(x0, t0)) = ∅}.

Since Sσ0(U(x0, t0)) is open, there exists some ϵ0 > 0 such that for any ϵ with
|ϵ| < ϵ0, Sσ0(U(x0 + ϵ, t0)) also attains the maximal value in (3.1). In particular, if
Sσ ∈ H is arbitrary, we in fact have Sσ(K) ∩ Sσ0(B(x0, t0)) = ∅. Since H is a finite
set, take

t1 = min
{
min{dist(f(K), Sσ0(B(x0, t0))) : f ∈ H}, t0

}
> 0.

It remains to show that such a t1 works.
Write St0(U(x0, t0)) = {Sϕ1 , . . . , Sϕm} and set

F = {∆ ∈ Ft1 : ∆ ∩ U(x0, t0) ̸= ∅}.

Suppose for contradiction there is some ∆ ∈ F that is not an essential net interval,
and let ∆ have neighbours generated by distinct functions {Sω1 , . . . , Sωk

} with
ωi ∈ Λt1 . As argued in Proposition 3.5, since ∆1 := Sσ0(∆) is not a net interval
with neighbour set V(∆) (or ∆1 would be a descendant of ∆0, and hence essential),
there exists some τ ∈ Λrσ0 t1

such that Sτ (K) ∩ ∆◦
1 ̸= ∅ and Sτ ̸= Sσ0ωi

for each
1 ≤ i ≤ k. We also observe that

(3.2) {Sσ0ω1 , . . . , Sσ0ωk
} = {Sσ0ξ : ξ ∈ Λt1 , Sσ0ξ(K) ∩∆◦

1 ̸= ∅}.

Since t1 ≤ t0, let τ1 ≼ τ be the unique prefix in Λrσ0 t0
. Suppose for contradiction

Sτ1(K)∩ Sσ0(U(x0, t0)) ̸= ∅. Since Sσ0(U(x0, t0)) attains the maximal value in (3.1),
we have Sτ1 = Sσ0 ◦ Sω for some Sω ∈ Srσ0 t0

(Sσ(U(x0, t0))). Thus there exists
some word ξ such that Sτ = Sσ0 ◦ Sξ, which contradicts (3.2). We thus have that
Sτ1(K) ∩ Sσ0(U(x0, t0)) = ∅ so that Sτ1 ∈ H .

But by definition of ∆1, we have that ∆1∩Sσ0(U(x0, t0)) ̸= ∅ and ∆◦
1∩Sτ1(K) ̸=

∅, so

dist(Sτ1(K), Sσ0(U(x0, t0))) < diam(∆1) ≤ t1,

contradicting the choice of t1. Thus every ∆ ∈ F is in fact essential, as claimed.□

Remark 3.8. In fact, the same proof shows that if U(x0, t0) attains the maximal
value in (3.1), ∆ ⊂ U(x0, t0) is any net interval, and rσ > 0, then Sσ(∆) is a net
interval with V(∆) = V(Sσ(∆)). In particular, ∆ must be an essential net interval.
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Remark 3.9. In §5.3.3, we show that the converse of (ii) need not hold: there exists
some IFS {Si}i∈I satisfying the weak separation condition and an essential net
interval ∆ such that ∆ ∩K is not contained a finite union of balls U(x0, t0). In the
same example, we show that if W is the union of all balls U(x0, t0) which attain
the maximal value in (3.1), then W ∩K ⊊ Kess.

3.2. An important measure approximation lemma. The following technical
lemma is a key approximation property for measures satisfying the weak separa-
tion condition, and the main factor behind the regularity of the measure on the
essential class. Note the similarity of the result to the weak separation “counting”
results; see, for example, Feng and Lau [FL09, Proposition 4.1].

Lemma 3.10. Suppose the IFS {Si}i∈I satisfies the weak separation condition, and let
v ∈ V (Gess) be fixed. Then there exist constants c, C > 0 (depending on v) such that for
any ball B(x, t) with µp(B(x, t)) > 0, there exists t ≥ s ≥ ct and ∆ ∈ Fs such that
∆ ⊆ B(x, 2t), V(∆) = v, and Qp(∆)j ≥ C · µp(B(x, t)) for each 1 ≤ j ≤ #v.

Proof. Since µp(B(x, t)) > 0 and µp is non-atomic, U(x, t) ∩K ̸= ∅. From the
weak separation condition, there exists some ℓ ∈ N such that #St(B(x, t)) ≤ ℓ for
any x ∈ R and t > 0. By the invariant property of µp and since µp is a probability
measure, we have

µp(B(x, t)) =
∑

σ∈Λt(B(x,t))

pσµp ◦ S−1
σ ((B(x, t))) ≤

∑
σ∈Λt(B(x,t))

pσ

=
∑

Sω∈St(B(x,t))

∑
σ∈Λt(B(x,t))

Sσ=Sω

pσ.

In particular, since #St(B(x, t)) ≤ ℓ, get ω0 such that

(3.3)
∑

σ∈Λt(B(x,t))
Sσ=Sω0

pσ ≥ µp(B(x, t))/ℓ.

Note that Sω0(K) ∩ B(x, t) ̸= ∅, so that Sω0([0, 1]) ⊆ B(x, 2t). If rω0 < 0, get k ∈ I
with rk < 0 and set ω1 = ω0k; otherwise, take ω1 = ω0. Now, let ∆0 ∈ Fs0 be such
that #Vc(∆0) is maximal. Exactly as argued in Proposition 3.5, ∆1 := Sω1(∆0) is a
net interval in generation rω1 · s0 with V(∆1) = V(∆0). Moreover, we know that if
σ generates some neighbour f of ∆0, then ω1σ generates the same neighbour f of
∆1. Fix some 1 ≤ j ≤ #V(∆1) and let fj be the neighbour of ∆1 corresponding to
the index j. We then have by using (3.3) and the above observation that

(Qp(∆1))j = µ(f−1
j ((0, 1)))

∑
σ∈Λs0rω1

σ generates fj

pσ

≥ pk

( ∑
σ∈Λt(B(x,t))

Sσ=Sω1

pσ

)
· µ(f−1

j ((0, 1))) ·
∑
σ∈Λs0

σ generates fj

pσ
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≥ µp(B(x, t)) · pk · (Qp(∆0))j
ℓ

≥ µp(B(x, t)) · C1

where C1 := pk ·minj(Qp(∆0))j/ℓ, which depends only on the IFS and choice of
probabilities.

Now let η be any fixed path from V(∆0) to v and let ϵ be the smallest strictly
positive entry of T (η). Let ∆ be the unique net interval with symbolic γη where
γ is the symbolic representation of ∆0. Since T (η) is non-negative and Qp(∆) =
Qp(∆1)T (η) is a positive vector, we have that (Qp(∆))j ≥ µp(B(x, t)) ·C1 ·ϵ. Taking
C := C1ϵ, we see that C satisfies the requirements. Moreover, since ∆0 ∈ Frω0s0

,
taking c = s0L(η) · r2min and noting that t · rmin ≤ |rω0| ≤ t, we have that ∆ ∈ Fs

where s ≥ ct. Finally, ∆ ⊆ ∆1 ⊆ Sω0([0, 1]) ⊆ B(x, 2t) as required. □

3.3. Measure properties of the essential class. As our first consequence of this
lemma, we establish that the interior essential points form a large subset of K.

Theorem 3.11. Let {Si}i∈I be an IFS satisfying the weak separation condition with
attractor K and let v ∈ V (Gess) be arbitrary. Let

E =
⋃
∆∈F

V(∆)=v

∆ ∩K.

Then if µp is any associated self-similar measure, µp(K \ E) = 0. In particular, µp(K \
Kess) = 0.

Proof. By Lemma 3.10, there exist constants c, C > 0 such that for any t > 0
and ball B(x, t) with µp(B(x, t)) > 0, there exists some net interval ∆ ∈ F with
∆ ⊆ B(x, 2t), V(∆) = v, and µp(∆) ≥ Cµp(B(x, r)). We will construct a nested
family of sets E1 ⊇ E2 ⊇ · · · such that each En is a finite union of intervals,
µp(En) ≤ (1− C/3)n, and K \ E ⊆

⋂∞
n=1 En. From this, the result clearly follows.

First consider the ball B1 = B(0, 1). Get ∆1 ⊆ B(0, 2) with V(∆1) = v, set
E1 = [0, 1] \ ∆1 so that µp(E1) ≤ 1 − C ≤ 1 − C/3. Since ∆1 is an interval, E1 is
a finite union of intervals and clearly K \ E ⊆ E1. Inductively, suppose En is a
finite union of intervals with µp(En) ≤ (1− λ)n. Since each En is a finite union of
intervals, there is a family of balls {B(xi, ti)}mi=1 such that the balls only overlap
pairwise on endpoints, En =

⋃m
i=1B(xi, ti), and for any distinct i1, i2, i3,

(3.4) B(xi1 , 2ti1) ∩B(xi2 , 2ti2) ∩B(xi3 , 2ti3)

is either a singleton or the empty set and hence has measure 0, as µp has no
atoms. Now for each 1 ≤ i ≤ m, apply Lemma 3.10 to get ∆i

n ⊆ B(xi, 2ti) with
µp(∆

i
n) ≥ Cµp(B(xi, ti)). While the ∆i

n need not be disjoint, by (3.4), there exists a
sub-collection labelled without loss of generality {∆i

n}m
′

i=1 such that

m′∑
i=1

µp(∆
i
n) ≥

1

3

m∑
i=1

µp(∆
i
n)

and ∆i
n ∩ ∆j

n is at most a singleton for i ̸= j. (To do this, pick the interval ∆i
n

with the largest measure and remove any net intervals ∆j
n where ∆j

n ∩∆i
n is not a
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singleton. By (3.4) and the geometry in R, there are at most 2 such indices j. Then
repeat until the set is exhausted.)

Set En+1 = En \
⋃m′

i=1∆
i
n. Each ∆i

n is an interval with V(∆i
n) = v, so that En+1

is a finite union of intervals with K \ E ⊆ En+1, and

µp(En+1) = µp(En)−
m′∑
i=1

µp(∆
i
n) ≤ µp(En)−

C

3

m∑
i=1

µp(B(xi, t))

≤ (1− C/3)µp(En) ≤ (1− C/3)n+1

as claimed. □

Remark 3.12. It can also be shown, using similar techniques, that if s = dimHK,
then Hs(K \ Kess) = 0 where Hs is the s-dimensional Hausdorff measure. This
follows from Ahlfors regularity of self-similar sets under the weak separation
condition [FHO+15, Theorem 2.1] along with Lemma 2.3, in place of Lemma 3.10.

3.4. Local dimensions and periodic points. The notion of a periodic point was
introduced by Hare, Hare and Matthews for IFS of the form {x 7→ rx + di}i∈I
with 0 < r < 1 satisfying the finite type condition [HHM16]. In this section, we
take advantage of the general matrix product formula, Theorem 2.12, to establish
symbolic formulas for the local dimensions at certain points which we call periodic.

Definition 3.13. Given a Borel probability measure µ, by the lower local dimension
of µ at x ∈ suppµ, we mean the number

dimlocµ(x) = lim inf
t↓0

log µ(B(x, t))

log t
.

The upper local dimension is defined analogously; when the upper and lower local
dimensions coincide, we call the shared value the local dimension of µ at x, denoted
by dimloc µ(x).

Definition 3.14. A periodic point is a point x ∈ K where every symbolic represen-
tation of x is of the form

[x] = (e1, . . . , en, θ, θ, . . .)

where n is minimal and θ = (θ1, . . . , θm) is a cycle of G with minimal length. In
this case, we call θ a period of the symbolic representation.

Intuitively, periodic points are the natural analogue of the rational numbers; for
example, with respect to the IFS {x 7→ x/2, x 7→ x/2 + 1/2}, the periodic points of
this IFS are precisely the rational numbers in [0, 1]. Under the weak separation
condition, it is straightforward to see that the periodic points form a countable
dense subset of K: if x, y ∈ K have symbolic representations of the form γη1 and
γη2, then both x and y are in the net interval with symbolic representation γ.

The proofs of Lemma 3.15 and Proposition 3.16 are motivated by the proofs
[HHN18, Theorem 2.6 and Proposition 2.7].
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Fix some x ∈ K. Enumerate {hj : j = 1, . . . , n} = {Sσ(0), Sσ(1) : σ ∈ Λt} with
h1 < · · · < hn. If x ̸= hj for each 1 ≤ j ≤ n, then there is a unique net interval
∆t(x) = [hi, hi+1] of generation t containing x. We then say ∆−

t (x) is the empty set
if i = 1 or (hi−1, hi) ∩K = ∅, and ∆−

t (x) = [hi−1, hi] otherwise, and we define ∆+
t

similarly. Then set

Mt(x) = ∆−
t (x) ∪∆t(x) ∪∆+

t (x).

Otherwise, x = hm for some m, and we write ∆1
t (x) = [hm−1, hm] if m ̸= 1 and

(hm−1, hm) ∩K is non-empty, and similarly for ∆2
t (x), and set

Mt(x) = ∆1
t (x) ∪∆2

t (x).

We have the following basic estimation:

Lemma 3.15. Let {Si}i∈I be an IFS as in (2.1) and let x ∈ K be such that sup{Rmax(∆) :
x ∈ ∆,∆ ∈ F} < ∞. Then if µp is any associated self-similar measure,

dimloc µp(x) = lim
t→0

log µp(Mt(x))

log t

provided the limit on the right exists. Similar statements hold with respect to the limit
supremum and limit infimum for the upper and lower local dimensions respectively.

Proof. Suppose the local dimension exists and equals D. Recall that if ∆ ∈ Ft,
then t ≥ tg(∆) = Rmax(∆) diam(∆). Thus there exists some constant 0 < ϵ such
that for any t > 0 and ∆ ∈ Ft with x ∈ ∆, ϵt < diam(∆). Moreover, diam(∆) ≤ t
always holds by the net interval construction.

If x is a boundary point, get s such that x is an endpoint of ∆s(x) and

B(x, ϵs) ⊆ ∆1
s(x) ∪∆2

s(x) ⊆ B(x, 2s)

where the notation is as above. Otherwise if x is not a boundary point, then

B(x, ϵs) ⊆ ∆−
s (x) ∪∆s(x) ∪∆+

s (x) ⊆ B(x, 2s)

In either case, B(x, ϵs) ⊆ Ms(x) ⊆ B(x, 2s) so that(
log ϵ+ log s

log s

)(
log µp(B(x, ϵs))

log ϵs

)
≤ log µp(Ms(x))

log s
≤
(
log s+ log 2

log s

)(
log µp(B(x, 2s))

log 2s

)
.

The limit of the left and right both exist and are equal to D; hence, the limit of the
middle expression exists and equals D. The arguments for the upper and lower
dimension follow similarly. □

In the following proposition, recall that for a path θ, L(θ) is the length of the path
defined in Definition 2.9.



SELF-SIMILAR MULTIFRACTAL MEASURES 25

Proposition 3.16. Let {Si}i∈I be any IFS and suppose x is a periodic point with period
θ = (e1, . . . , es). Then the local dimension of µ at x exists and is given by

dimloc µ(x) =
log sp(T (θ))

logL(θ)

where if x is a boundary point of a net interval with two different symbolic representations
given by periods θ and ϕ, then θ is chosen to satisfy

log sp(T (θ))

logL(θ)
≤ log sp(T (ϕ))

logL(ϕ)
.

Proof. First, suppose x is a periodic point with two distinct symbolic represen-
tations with periods θ = (θ1, . . . , θℓ) and ϕ = (ϕ1, . . . , ϕℓ′), so that x is an endpoint
of some net interval ∆ ∈ F . We first note that

µp(∆
1
t (x)) =

∥∥T (e1, . . . , ej, θ, . . . , θ︸ ︷︷ ︸
m

, θ1, . . . , θt)
∥∥

µp(∆
2
t (x)) =

∥∥T (e′1, . . . , e′j′ , ϕ, . . . , ϕ︸ ︷︷ ︸
m′

, ϕ1, . . . , ϕt′)
∥∥

for t sufficiently small, t < ℓ, and t′ < ℓ′. Now, get constants ci which do not
depend on t such that∥∥(T (θ))m+1

∥∥ ≤
∥∥T (θ, . . . , θ︸ ︷︷ ︸

m

, θ1, . . . , θt)
∥∥ · ∥T (θt+1, . . . , θℓ)∥

≤ c1
∥∥T (e1, . . . , ej, θ, . . . , θ︸ ︷︷ ︸

m

, θ1, . . . , θt)
∥∥ ≤ c2 ∥T (θ)m∥ .(3.5)

Moreover, since

L(e1, . . . , ej)L(θ)
mL(θ1, . . . , θt)rmin ≤ t ≤ L(e1, . . . , ej)L(θ)

mL(θ1, . . . , θt),

we have L(θ)m ≍ t with constants of comparability not depending on t. Thus,
there exist ki not depending on t so that

log k1 ∥T (θ)m+1∥1/(m+1)

log k3 · L(θ)
≥ log µ(∆1

t (x))

log t
≥ log k2 ∥(T (θ))m∥1/m

log k4 · L(θ)

and taking the limit as t goes to 0 yields

lim
t→0

log µp(∆
1
t (x))

log t
=

log sp(T (θ))

logL(θ)

In the exact same way, we get

lim
t→0

log µp(∆
2
t (x))

log t
=

log sp(T (ϕ))

logL(ϕ)
.
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Now, since x is a periodic point, the set {V(∆) : x ∈ ∆,∆ ∈ F} is finite. Since
Rmax(∆) depends only on V(∆), sup{Rmax(∆) : x ∈ ∆,∆ ∈ F} < ∞ and the
assumptions for Lemma 3.15 hold. Then by the power mean inequality, we have

dimloc µp(x) = lim
t→0

log µp(∆
1
t (x)) + µp(∆

2
t (x))

log t

= min

(
lim
t→0

log µp(∆
1
t (x))

log t
, lim
t→0

log µp(∆
2
t (x))

log t

)
= min

(
lim
t→0

log spT (θ)

logL(θ)
, lim
t→0

log spT (ϕ)

logL(ϕ)

)
since the final two limits in the maximum exist, as claimed.

If x is an endpoint of some net interval but has only one symbolic representa-
tion, then either ∆1

t (x) or ∆2
t (x) is empty for sufficiently small t and the argument

is identical, but easier.
Finally, suppose x is not an endpoint of any net interval, and thus has unique

symbolic representation [x] = (e1, . . . , ej, θ, θ, . . .) where θ = (θ1, . . . , θℓ). In this
situation, ∆1 has symbolic representation (e1, . . . , ej, θ

n) and ∆2 has symbolic rep-
resentation (e1, . . . , ej, θ

n+1) for any n ∈ N, we have ∆2 ⊆ ∆◦
1. Thus for any t

sufficiently small, there exists some m ∈ N, such that ∆1 ⊆ ∆t(x) ⊆ Mt(x) ⊆ ∆2

where ∆1 has symbolic representation (e1, . . . , ej, θ
m) and ∆2 has symbolic repre-

sentation (e1, . . . , ej, θ
m+2). Similarly as argued in (3.5), there exist constants c1, c2

such that ∥T (θ)m+2∥ ≤ c1µ(∆t(x)) ≤ c2 ∥T (θ)m∥. In addition, since Mt(x) ⊆ ∆1,
we have µ(Mt(x)) ≤ µ(∆1) and there exist constants c′1, c′2 such that ∥T (θ)m+2∥ ≤
c′1µ(Mt(x)) ≤ c′2 ∥T (θ)m∥.

The argument proceeds identically as before. □

4. MULTIFRACTAL FORMALISM UNDER THE WEAK SEPARATION

CONDITION

In this section, we prove the multifractal formalism results under the weak separa-
tion condition.

4.1. Density of local dimensions at periodic points. We first show that under
the weak separation condition periodic points are abundant, in that the set of local
dimensions at periodic points is dense in the set of local dimensions in the essential
class. This generalizes a result of Hare, Hare and Ng on local dimensions [HHN18,
Corollary 3.15] for IFSs satisfying substantially stricter conditions. This property
can be useful in computing the exact set of possible local dimensions; see, for
example, §5.3.2 or the discussions of examples in [HHN18; HHM16; HHS21b].

Theorem 4.1. Let {Si}i∈I be an IFS satisfying the weak separation condition and µp an
associated self-similar measure. Then the set of local dimensions at periodic points is dense
in {dimloc(x) : x ∈ Kess} and {dimloc(x) : x ∈ Kess}.

Proof. Let x be an interior essential point. Either there exists some s0 such
that there is a unique essential net interval ∆0 ∈ Fs0 containing x, or there exists
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essential net intervals ∆1
0,∆

2
0 such that {x} = ∆1

0 ∩∆1
0. The cases are similar, but

the latter is slightly harder, so we treat that here.
Let t0 > 0 be such that B(x, 2t0) ⊆ ∆1

0 ∪∆2
0. Arguing similarly to Lemma 3.10,

there exists constants c, C > 0 such that for any 0 < t ≤ t0, there exists ∆1
t ⊆ ∆2

t ⊆
B(x, 2t) and for each k = 1, 2, we have ∆k

t ∈ Fs where t ≥ s ≥ ct,

min{Qp(∆
k
t )j : 1 ≤ j ≤ #V(∆k

t )} ≥ Cµp(B(x, t)),

and V(∆k
i ) = V(∆k

0). We may also assume that ∆1
t and ∆2

t do not contain x as
an endpoint. In particular, for each 0 < t ≤ t0, there exists some k ∈ {1, 2}
such that ∆k

t ⊆ (∆k
0)

◦. Set ∆t = ∆k
t and let ηt be the path in the transition graph

corresponding to ∆k
t ⊆ ∆k

0, which is a cycle since the two net intervals have
the same neighbour set. Let γ1 be the symbolic representation of ∆1

0 and γ2 the
symbolic representation of γ2

0

For each 0 < t ≤ t0, let xt be any periodic point with period ηt. We note that
since xt is not the boundary point of any net interval, we have by Proposition 3.16

dimloc µp(xt) =
log spT (ηt)

logL(ηt)
.

Fix t as above, and let ∆0 ∈ {∆1
0,∆

2
0} be such that x0 ∈ ∆◦

0. Let ∆0 have
symbolic representation γ. By definition of c, we observe that t ≥ tg(∆t) ≥ crmint.
Since tg(∆t) = L(γ)L(ηt), there exist constants c1, c2 > 0 (not depending on t) such
that

c12t ≤ L(ηt) ≤ c2t.

We also bound spT (ηt). Since ∆t ⊆ B(x, 2t) has symbolic representation γηt,
we have ∥T (γηt)∥ ≤ µp(B(x, 2t)) and since T (γ) is a transition matrix, there exists
some C1 > 0 such that

spT (ηt) ≤ ∥T (ηt)∥ ≤ C1µp(B(x, 2t))

(just take C1 to be the smallest strictly positive entry of T (γ1) and T (γ2)). On the
other hand, since Qp(∆t) = Qp(∆0)T (ηt),

spT (ηi) ≥
min{Qp(∆t)j : 1 ≤ j ≤ #v}
max{Qp(∆0)j : 1 ≤ j ≤ #v}

≥ Cµp(B(x, t))

max{Qp(∆k
0)j : 1 ≤ j ≤ #v, 1 ≤ k ≤ 2}

= C2µp(B(x, t)).

To summarize, we have shown that

logC2 + log µp(B(x, t))

log c2 + log t
≥ dimloc µp(xt) =

log spT (ηt)

logL(ηt)

≥ logC1 + log µp(B(x, 2t))

log c1 + log 2t
.



28 RUTAR

Let α = dimlocµp(x) and let ϵ > 0 be arbitrary. Get some t1 > 0 such that for all
0 < t ≤ t1,

logC2 + log µp(B(x, t))

log c2 + log t
≤ α + ϵ

and then choose 0 < t ≤ min{t0, t1} such that

logC1 + log µp(B(x, 2t))

log c1 + log 2t
≥ α− ϵ.

Since ϵ > 0 was arbitrary, it follows that the set of local dimensions at periodic
points is dense in {dimloc(x) : x ∈ Kess}. The result for lower local dimensions
holds identically. □

4.2. The Lq-spectrum, dimension spectrum, and multifractal formalism. In this
section, we show how to extend a result of Feng and Lau [FL09] to hold with
respect to a larger, more natural class of intervals.

Let µ be a compactly supported finite Borel measure and let V ⊆ R be any open
set with µ(V ) > 0. Then the Lq-spectrum of µ on V , denoted by τV (µ, q), is given by

τV (µ, q) = lim inf
t↓0

log sup
∑

i µ
(
B(xi, t)

)q
log t

where the supremum is over families of disjoint closed balls {B(xi, t)}i with
xi ∈ suppµ and B(xi, t) ⊆ V . A direct application of Hölder’s inequality shows
that τV (q) is a concave function. When V = R, we write τ(µ, q) = τR(µ, q).

Since τV (µ, q) is a concave function in q, its concave conjugate is given by

τ ∗V (µ, α) := inf{αq − τV (q) : q ∈ R}.

We set

DV (µ) = {α ∈ R : dimloc µ(x) = α for some x ∈ K ∩ V }

and

KV (µ, α) = {x ∈ K ∩ V : dimloc µ(x) = α}.

Understanding the geometric properties of the sets KV (µ, α) is a natural way to
understand the structure of µ.

A heuristic relationship between the values if dimH KV (µ, α) and the concave
conjugate of Lq-spectrum, known as the multifractal formalism, has been studied
by many authors (see, for example, [CM92; Fen03a; Fen09; FL09; FLW05; HJK+86;
Lau95; LN99; Pat97; PW97; Shm05]).

Definition 4.2. Let µ be a compactly supported finite Borel measure and let V ⊂ R
have µ(V ) > 0. We say that the measure µ satisfies the complete multifractal
formalism with respect to V if
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(i) DV (µ) = [αmin, αmax] where

αmin = lim
q→+∞

τV (q)

q
αmax = lim

q→−∞

τV (q)

q
.

(ii) For any α ∈ [αmin, αmax], τ ∗V (α) = dimH KV (α).

Note that we do not comment on differentiability of τV (q).

4.3. Weak regularity and restricting the Lq-spectrum. We now begin the setup
for the statement and proof of Theorem 1.2. In the statement, we are restricting
our measure µp to a set K ∩ E where E is a finite union of closed intervals. In the
interior of E, this does not cause any problems: in general, if V is any open set,
then τV (µp, q) ≥ τ(µp, q). However, the measure of balls centred at the endpoint
of a closed interval could be substantially smaller.

For example, suppose µp is the uniform Cantor measure (corresponding to the
IFS S1(x) = x/3 and S2(x) = x/3 + 2/3 with probabilities p1 = p2 = 1/2) and x is
the point with symbolic representation consisting of increasingly long alternating
stretches of 1s and 2s. Then, the one-sided upper local dimensions of µp|[0,x] at x is
not equal to the everywhere constant value of the local dimension of µp.

In this section, we introduce the notion of weak regularity, which ensures that
this situation does not happen. We also prove some results which show that this
hypothesis is not too challenging to satisfy in general.

We recall that E is Ahlfors regular if there is some s > 0 and a, b > 0 such that

ats ≤ Hs(E ∩B(x, t)) ≤ bts

for all x ∈ E and t sufficiently small. If K is the attractor of an IFS satisfying the
weak separation condition, then K is always Ahlfors regular (see, for example,
[FHO+15]).

Definition 4.3. We say that a set E is weakly regular if there is some ϵ > 0 such that
for all t > 0 sufficiently small,

E ∩
(
B(x, t) \B(x, ϵt)

)
̸= ∅

for all x ∈ E.

We begin with the following useful observation.

Lemma 4.4. Suppose K is Ahlfors regular and E ⊂ K is compact. Then E is weakly
regular if and only if the boundary of E (in the topology relative to K) is weakly regular.

Proof. The forward direction is immediate. Conversely, let 0 < ϵ0 < 1 be the
constant from weak regularity of the boundary of E. Suppose x is in the interior of
E relative to K and let t > 0. If B(x, tϵ0/4)∩K = B(x, tϵ0/4)∩E, then for ϵ < ϵ0/4,

Hs
(
E ∩B(x, tϵ0/4) \B(x, ϵt)

)
≥ (a(ϵ0/4)

s − ϵsb)ts > 0
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for some ϵ > 0 depending only on a, b, s, and ϵ0. Thus E ∩ B(x, t) \ B(x, ϵt) ̸= ∅.
Otherwise, there is some y ∈ B(x, tϵ0/4) in the boundary of E so that

∅ ̸= E ∩B(y, t/2) \B(y, tϵ0/2) ⊂ E ∩B(x, t) \B(x, tϵ0/4).

as required. □

The main point behind weak regularity is the following lemma.

Lemma 4.5. Let µ be a Borel probability measure with compact support K, and let V be
an open set with µ(V ) > 0. Suppose E ⊂ V is a finite union of closed intervals such that
E ∩K is weakly regular. Then τV (µ, q) ≤ τ(µ|E, q).

Proof. This follows directly for q ≥ 0 since for all t sufficiently small, B(x, t) ⊂
V for any x ∈ E ∩K.

Otherwise, let q < 0 and let t be sufficiently small such that each interval in
E has length at least 2t and B(x, t) ⊂ V for any x ∈ E ∩ K. Let {B(xi, t)}i be
an arbitrary centred packing of E ∩K. By weak regularity, there is some ϵ > 0
such that for each i, there is some yi ∈ E ∩ K such that B(yi, ϵt) ⊆ B(xi, t) ∩ E.
Therefore, ∑

i

µ|E(B(xi, t))
q ≤

∑
i

µ|E(B(yi, ϵt))
q =

∑
i

µ(B(yi, ϵt))
q.

But {B(xi, t)}i was arbitrary, so the desired result follows. □

We now show that intervals J with J ∩K weakly regular are abundant. Recall
that F (δ) denotes the (closed) δ-neighbourhood of a set F .

Lemma 4.6. Let {Si}i∈I be an IFS satisfying the weak separation condition with attractor
K and let δ > 0. Then if F ⊂ Kess is any compact subset, there is a finite union of essential
net intervals E = ∆1 ∪ · · · ∪∆n such that F ⊂ E ⊂ F (δ) and E ∩K is weakly regular.

Proof. For each t > 0 set

Ht = {∆ ∈ Ft : V(∆) ∈ V (Gess)}

and let

Ut =
( ⋃
∆∈Ht

∆
)◦
.

It follows directly from the definition that Kess =
⋃

t>0 Ut. We may assume δ
is sufficiently small so that F (δ) ⊂ Kess. Since F (δ) is compact, get t0 such that
F (δ) ⊂ Ut0 , let t1 = min{t0, δ/2}, and set

E = {∆ ∈ Ht1 : ∆ ∩ F ̸= ∅},

E0 =
⋃
∆∈E

∆.
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Note that F ⊂ E0 ⊂ F (δ/2) since diam(∆) ≤ t1 for any ∆ ∈ Ft1 . Now for each ∆ ∈
E , get 0 < t ≤ t1 and σ, τ ∈ Λt such that rσ, rτ > 0 and ∆ ⊆ [Sσ(0), Sτ (1)] ⊆ ∆(δ/2).
Finally, set

E∆ = {∆′ ∈ Ft : ∆
′ ⊂ [Sσ(0), Sτ (1)]}.

Observe that

K ∩
⋃

∆′∈E∆

∆′ = K ∩ [Sσ(0), Sτ (1)] ⊂ F (δ)

is weakly regular by Lemma 4.4. Moreover, since F (δ) ⊂ Ut0 , each ∆′ ∈ E∆ is
essential. Thus since a union of weakly regular sets is again weakly regular,

E =
⋃
∆∈E

⋃
∆′∈E∆

∆

satisfies the requirements. □

We conclude this section with the following observation.

Lemma 4.7. Let {Si}i∈I be any equicontractive IFS satisfying the weak separation condi-
tion. If E is any finite union of net intervals such that E ∩K contains no isolated points,
then E is weakly regular.

Proof. Write Si(x) = rx+ di where 0 < r < 1. It suffices to prove that [0, x] ∩K
and [x, 1] ∩K are weakly regular for any x = Sσ(z) where σ ∈ I∗ and z ∈ {0, 1},
where x is not an isolated point of [0, x] ∩K or [x, 1] ∩K. We will prove the case
[0, Sσ(0)] ∩K; the remaining cases are either analogous or easier.

Suppose for contradiction [0, Sσ(0)] is not weakly regular and get indices
(kn)

∞
n=1 and a sequence (ϵn)

∞
n=1 converging monotonically to zero such that

[Sσ(0)− rkn , Sσ(0)− ϵnr
kn) ∩K = ∅

for each n ∈ N. Since Sσ(0) is an accumulation point from the right, there is some
τn ∈ Ikn such that Sτn([0, 1]) ⊇ [Sσ(0)− δ, Sσ(0)] for some δ > 0 sufficiently small.
But Sτn({0, 1}) ∩ [Sσ(0)− rkn , Sσ(0)− ϵnr

kn) = ∅, which forces

|Sτn(0)− Sσn(0)| ≤ ϵnr
kn .

where σn ∈ Ikn is the word with σ as a prefix and Sσn(0) = Sσ(0). This contradicts
the weak separation condition by [Zer96, Theorem 1]. □

Remark 4.8. In the general case, the same argument gives that x 7→ λx for some
λ ̸= 0 is an accumulation point of {S−1

σ ◦Sτ : σ, τ ∈ I∗} in the topology of pointwise
convergence. The equicontractive assumption gives that λ = 1, but it is unclear
how to guarantee this in general.
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4.4. Multifractal formalism for the essential class. We now prove the multifrac-
tal formalism for the essential class. We begin with the following result, which is
contained in [FL09, Theorem 5.4]:

Proposition 4.9 ([FL09]). Let {Si}i∈I be an IFS satisfying the weak separation condition
and let µp be an associated self-similar measure. Let U0 be any open ball which attains the
maximal value in (3.1). Then µp satisfies the complete multifractal formalism with respect
to U0.

Using the notion of the essential class, we can obtain a strictly stronger extension
of this proposition. We first note the following straightforward lemma:

Lemma 4.10 ([FL09]). Let {Si}i∈I be an IFS satisfying the weak separation condition
and let µp be an associated self-similar measure. Let U0 be any open ball which attains the
maximal value in (3.1). Then if σ ∈ I∗ is arbitrary,

(i) τSσ(U0)(µp, q) = τU0(q),
(ii) DSσ(U0)(µp) = DU0(µp), and

(iii) dimH KU0(µp, α) = dimHKSσ(U0)(µp, α).

Proof. Statement (i) is [FL09, Corollary 5.6]. Statements (ii) and (iii) are implicit
in the usage of [FL09, Lemma 2.5]. □

We obtain the following extension of Proposition 4.9. In light of Proposition 3.7
and Lemma 4.6, our result is strictly stronger.

Theorem 4.11. Let {Si}i∈I be an IFS satisfying the weak separation condition and let
µp be a self-similar measure. Let ∆1, . . . ,∆n be any essential net intervals such that with
E := ∆1 ∪ · · · ∪∆n, E ∩K is weakly regular. Then with ν = µp|E ,

(i) ν satisfies the complete multifractal formalism,
(ii) the set

P (µp) := {dimloc µp(x) : x ∈ Kess, x periodic}

is dense in D(ν), and
(iii) the sets of local dimensions satisfy

D(ν) = {dimloc µp(x) : x ∈ Kess, dimloc µp(x) exists}
= {dimlocµp(x) : x ∈ Kess} = {dimlocµp(x) : x ∈ Kess}.

Moreover, the values of τ(ν, q) do not depend on the choice of ∆1, . . . ,∆n and for q ≥ 0,
τ(µp, q) = τ(ν, q).

Proof. We split the proof into two parts for clarity.

Part I. The statement (i) holds, the values of τ(ν, q) do not depend on the choice of
∆1, . . . ,∆n, and for q ≥ 0, τ(µp, q) = τ(ν, q).

Let U0 be an open ball which attains the maximal value in (3.1).
To verify (i), by Proposition 4.9, it suffices to show that

τU0(µp, q) = τ(ν, q) DU0(µp) = D(ν) dimH KU0(µp, α) = dimHK(ν, α).
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Let σ be such that Sσ(U0) ⊆ E, and we see directly from the definitions and
Lemma 4.10 that

τU0(µp, q) = τSσ(U0)(µp, q) ≥ τ(ν, q)

DU0(µp) = DSσ(U0)(µp) ⊆ D(ν)

dimHKU0(µp, α) = dimH KSσ(U0)(ν, α) ≤ dimH K(ν, α).

We now establish the reverse inequalities.
That τ(µp, q) = τU0(µp, q) = τ(ν, q) for q ≥ 0 is straightforward; see, for exam-

ple, [FL09, Proposition 3.1].
Otherwise, fix q < 0. Since U0 is open and the ∆i are essential, there exist

net intervals ∆∗
1, . . . ,∆

∗
n such that V(∆i) = V(∆∗

i ) for each 1 ≤ i ≤ n and the
∆∗

i are pairwise disjoint. By Lemma 4.6, there exist compact intervals Fi ⊇ ∆∗
i

such that the Fi are weakly regular, pairwise disjoint, and have Fi ⊂ U0. Set
E∗ := F1 ∪ · · · ∪ Fn and let ν∗ := ν|E∗ . Since E∗ is weakly regular, it follows that
τU0(µp, q) ≤ τ(ν∗, q) by Lemma 4.5.

It remains to show that τ(ν∗, q) ≤ τ(ν, q) for q < 0. By Lemma 2.3, get similari-
ties gi : ∆i ∩K → ∆∗

i ∩K and some c1, c2 > 0 such that if E ⊆ ∆i is an arbitrary
Borel set,

(4.1) c1ν
∗(gi(E)) ≤ ν(E) ≤ c2ν

∗(gi(E))

Let each gi have contraction ratio ρi.
Now let t > 0 be sufficiently small so that 2t ≤ min{diam(∆i) : 1 ≤ i ≤ n} and

let ϵ0 > 0 be the constant from weak regularity of E ∩K. Suppose {B(xj, t)}mj=1 is
an arbitrary family of disjoint closed balls where xj ∈ E ∩K. For each j, there is
some i(j) and yj such that

(4.2) B(yj, tϵ0/4) ⊆ ∆i(j) ∩B(xj, t)

(this must hold for either yj = xj or yj ∈ E ∩K ∩B(xj, t/2) \B(xj, tϵ0/2)).
Now set

ρ0 =
ϵ0
4
min{ρi : 1 ≤ i ≤ n}.

For each 1 ≤ j ≤ m, by (4.2),

ν(B(xj, t)) ≥ ν(B(yj, tϵ0/4) ≥ c1ν
∗(B(gi(j)(yj), ρi(j)tϵ0/4))

≥ c1ν
∗(B(gi(j)(yj), ρ0t))

so that ν(B(xj, t))
q ≤ cq1ν

∗(B(x∗
j , ρ0t))

q where x∗
j = gi(j)(yj). Observe also that the

B(x∗
j , ρ0t) are pairwise disjoint. But {B(xj, t)}mj=1 was an arbitrary cover, so that

log sup
∑

j ν(B(xj, t))
q

log t
≥

log cq1 + log sup
∑

j ν
∗(B(x∗

j , ρ0t))
q

log ρ−1
0 + log ρ0t

.

Taking limits, it follows that τ(ν, q) ≥ τ(ν∗, q) for q < 0.



34 RUTAR

We now see that D(ν) ⊆ DU0(µp). First note that DU0(µp) = [αmin, αmax] where

αmin = lim
q→+∞

τ(ν, q)

q
= lim

q→+∞

τU0(µp, q)

q
αmax = lim

q→−∞

τ(ν, q)

q
= lim

q→−∞

τU0(µp, q)

q
,

since τ(ν, q) = τU0(µp, q). Let x ∈ supp ν be arbitrary with α = dimloc ν(x). Then
for any q ∈ R and t > 0, we have

log sup
∑
i

ν(B(xi, t))
q ≥ log ν(B(x, t))q

where the supremum is over disjoint balls B(xi, t) with xi ∈ supp ν, and therefore
τ(ν, q) ≤ qα. Since τ(ν, q) is concave, it follows that α ∈ [αmin, αmax] = DU0(µp).

Finally, we verify that dimHK(ν, α) ≤ dimH KU0(µp, α). First note by (4.1) that
if x ∈ ∆◦

i ∩K for some i, then gi(x) ∈ (∆∗
i )

◦ ∩K ⊂ U0 has

dimloc ν(x) = dim ν∗(gi(x)) = dimloc µp(gi(x)).

Thus gi(K(ν, α) ∩∆◦
i ) ⊆ KU0(µp, α) and

dimH

(
K(ν, α) ∩

n⋃
i=1

∆◦
i

)
≤ dimH KU0(µp, α).

Since D(ν) = DU0(µp) and E \
⋃n

i=1∆
◦
i is a finite set (and hence has Hausdorff

dimension 0), the result follows.
Thus the complete multifractal formalism holds.
Since U0 was fixed, τ(ν, q) does not depend on the choice of ∆1, . . . ,∆n.

Part II. Statements (ii) and (iii) hold.

We now see that

(4.3) D(ν) = {dimloc µp(x) : x ∈ Kess, dimloc µp(x) exists}.

If x ∈ Kess, by Lemma 4.6, there is a weakly regular finite union of essential net
intervals F such that x ∈ (F ∩K)◦ where we take the interior relative to K, and

dimloc µp(x) = dimloc µp|F (x) ∈ D(ν)

since D(ν) = D(µp|F ) as proven above. Conversely, if α ∈ D(ν), then there exists
some y ∈ U0 such that dimloc µp(y) = α. But U0 ⊆ Kess by Proposition 3.7, so that
(4.3) follows.

By Theorem 4.1, we have that

P (µp) = {dimloc µp(x) : x ∈ Kess, x periodic}

is dense in the set of upper and lower local dimensions in Kess. Now P (µp) ⊆ D(ν)
from (4.3) and D(ν) = [αmin, αmax] is a closed set with D(ν) ⊆ {dimlocµp(x) : x ∈
Kess}. But again, Theorem 4.1 shows that P (µp) is a dense subset of {dimlocµp(x) :
x ∈ Kess}, forcing

D(ν) = {dimlocµp(x) : x ∈ Kess}.
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Of course, we also have D(ν) = {dimlocµp(x) : x ∈ Kess} by the same argument,
finishing the proof of the theorem. □

Corollary 4.12. Let {Si}i∈I be an IFS satisfying the weak separation condition with
associated self-similar measure µp. Then there exists a sequence of non-empty compact
sets (Km)

∞
m=1 with Km ⊆ Km+1 ⊆ K for each m ∈ N such that

(i) limm→∞ µp(Km) = 1,
(ii) each µm := µp|Km satisfies the complete multifractal formalism, and

(iii) τ(µm, q) and D(µm) do not depend on the index m.

Proof. Since µp is Borel and Kess is a relatively open subset of K with µp(Kess) =
1 by Theorem 3.11, there exists a nested sequence of compact sets (Fm)

∞
m=1 with

Fm ⊂ Kess such that limm→∞ µ(Fm) = 1. Let Km ⊇ Fm be a finite union of
essential net intervals given by Lemma 4.6. Then by Theorem 4.11, each µm :=
µp|Km satisfies the complete multifractal formalism and τ(µm, q) and D(µm) do not
depend in the index m, as required. □

In some situations, the above theorem can also be used to verify that the complete
multifractal formalism holds with respect to the invariant measure µp.

Corollary 4.13. Suppose {Si}i∈I is an IFS satisfying the weak separation condition with
transition graph G. Suppose there is a bound on the maximum length of a path with no
vertices in the essential class. Then if µp is any associated self-similar measure, µp satisfies
the complete multifractal formalism and the local dimensions at periodic points are dense
in the set of all local dimensions in K.

Proof. If M is the bound on the maximum length of a path, since L(e) ≥ rmin

for any e ∈ E(G), we have that any net interval in FrMmin
is an essential net interval.

In particular, suppµp is contained in a finite union of essential net intervals, which
is automatically weakly regular. Apply Theorem 4.11. □

Remark 4.14. For example, if the neighbour set V([0, 1]) = {x 7→ x} is contained
in the essential class, then G = Gess and the conditions for the Corollary 4.13 are
satisfied.

Corollary 4.15. Suppose {Si}i∈I is an IFS such that the associated transition graph G is
finite. Suppose that any cycle in G is contained in the essential class. Then if µp is any
associated self-similar measure, µp satisfies the complete multifractal formalism and the
local dimensions at periodic points are dense in the set of all local dimensions in K.

Proof. When G is finite, the assumption in Corollary 4.13 is equivalent to the
assumption that any cycle is contained in the essential class. □

5. THE FINITE NEIGHBOUR CONDITION AND EXAMPLES

5.1. The finite neighbour condition. Let {Si}i∈I be an IFS as in (2.1). The finite
neighbour condition was defined in [HHR21] in a way following naturally from
the finite type conditions studied in the literature [LN07; NW01].
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Definition 5.1. We say that {Si}i∈I satisfies the finite neighbour condition if there
are only finitely many neighbour sets. Equivalently, its transition graph G is finite.

Remark 5.2. The definition of a neighbour in Definition 2.1 differs slightly from
[HHR21, Definition 2.7]. Namely, for a net interval ∆ ∈ F and T ∈ V(∆),
we require T (K) ∩ (0, 1) ̸= ∅ rather than T ([0, 1]) ⊇ [0, 1]. However, using
[DLN13, Corollary 3.4] with respect to the generation k0 := rmin/M where M =
sup∆∈F Rmax(∆) and the characterization [HHR21, Theorem 3.4.], one can verify
that the finiteness assumptions are in fact equivalent.

It is shown in [HHR21] that the finite neighbour condition is equivalent to the
generalized finite type condition [LN07] holding with respect to the invariant open
set (0, 1). Moreover, under the assumption that the attractor K is an interval, it is
proven in [Fen16; HHR21] that the finite neighbour condition is in fact equivalent
to the weak separation condition. The author is not aware of any IFS of similarities
in R which satisfies the weak separation condition but not the finite neighbour
condition.

Of course, when an IFS satisfies the finite neighbour condition, it also satisfies
the weak separation condition (see, for example, [LN07, Theorem 1.1] or [HHR21,
Theorem 3.7]) and thus has a unique finite essential class Gess. Interestingly, the
converse also holds:

Theorem 5.3. The IFS {Si}i∈I satisfies the finite neighbour condition if and only if
G({Si}i∈I) has a finite essential class.

Proof. (=⇒) Since the finite neighbour condition implies the weak separation
condition, this follows immediately from Proposition 3.5 since G is a finite graph.

(⇐=) We first define a construction on neighbour sets. Let v1 = {f1, . . . , fℓ1}
and v2 = {g1, . . . , gℓ2} be a pair of neighbour sets. We denote by J(v1, v2) the set of
all subsets w = {h1, . . . , hm} such that there exist indices i, j and T = fi ◦ g−1

j such
that

{T∆ ◦ h1, . . . , T∆ ◦ hm} ⊂ {f1, . . . , fℓ1}

where ∆ =
[
min{0, T (0), T (1)},max{1, T (0), T (1)}

]
and T∆(x) = rx + d with

r > 0 where T∆([0, 1]) = ∆. Clearly there are only finitely many functions T ,
so that J(v1, v2) is a finite set. When F is a finite set, we denote by J(F ) =⋃

v1,v2∈F J(v1, v2), which is also finite.
Now, by assumption, G has a finite essential class Gess so that J0 := J(V (Gess))

is finite. Let ∆0 ∈ Fα be an arbitrary net interval; we will see that V(∆0) ∈ J0, from
which it follows that {Si}i∈I satisfies the finite neighbour condition.

First, let σ be such that rσ > 0 and Sσ([0, 1]) is a finite union of essential
net intervals (just take σ such that Sσ([0, 1]) is contained in some essential net
interval; if rσ < 0, append some i ∈ I with ri < 0). Let V(∆0) have neighbours
generated by words {ω1, . . . , ωm} in Λα; note that each σωi ∈ Λrσα. Let ∆1 = Sσ(∆0)
and write ∆1 = [a, b]. Then there exist essential net intervals ∆a,∆b ∈ Frσα

such that ∆a = [a, a0] and ∆b = [b0, b]; perhaps ∆a = ∆b. Note that σω1 has
∆a,∆b ⊆ Sσω1([0, 1]) since ∆a,∆b ⊆ ∆1 so that σω1 generates a neighbour fa of ∆a

and fb of ∆b.
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We see that V(∆0) is a join of (V(∆a),V(∆b)). Set T = fa ◦ f−1
b . We first note

that
• T∆a ◦ fa = Sσω1 = T∆b

◦ fb, so that T := fa ◦ f−1
b = T∆b

◦ T−1
∆a

and
• ∆ :=

[
min{0, T (0), T (1)},max{1, T (0), T (1)}

]
= T−1

∆a
(∆1) so that T∆ = T−1

∆a
◦

T∆1 .
Now let h ∈ V(∆0) be arbitrary. Since rσ > 0, T∆1 = Sσ ◦T∆0 . Then if h = T−1

∆0
◦Sωi

,
we have

T∆ ◦ h = (T−1
∆a

◦ T∆1) ◦ (T−1
∆1

◦ Sσ ◦ Sωi
) = T−1

∆a
◦ Sσωi

,

where σωi generates a neighbour of ∆a, and thus T∆ ◦ h ∈ V(∆a), as required. □

Remark 5.4. If v, w ∈ V (Gess), then there are at most #v ·#w distinct functions T ,
so that #J(v, w) ≤ #v · #w · 2#v. Moreover, there are at most (#V (Gess))

2 pairs
(v, w). In particular, if there are m distinct neighbours in Gess, then #V (Gess) ≤ 2m

and #v ≤ m for any v ∈ V (Gess), so that

#V (G) ≤ (#V (Gess))
2 ·m2 · 2m ≤ m28m.

Thus the above proof gives a quantitative bound on the size of G as a function of
the number of distinct neighbours in Gess.

5.2. Approximate transition matrices. Under the finite neighbour condition, we
may approximate the transition matrix T (e) by the matrix T ∗(e) given by T ∗(e)ij =

pℓ in the same context as (2.4). Since there are only finitely many values µp(f
−1
i ((0,1))

µp(g
−1
j ((0,1))

,

there exist constants c1, c2 > 0 such that c1T ∗(η) ≤ T (η) ≤ c2T
∗(η) element-wise

for any admissible path η. Moreover, since µp is a probability measure, direct
computation shows that ∥T ∗(η)∥1 ≤ µp(∆). Applying Theorem 2.12, we have:

Corollary 5.5. Let {Si}i∈I be an IFS satisfying the finite neighbour condition with
associated self-similar measure µp.

• There exist constants c1, c2 > 0 such that for any path η realized by (∆i)
n
i=0,

c1Qp(∆m) ≼ T ∗(η)Qp(∆0) ≼ c2Qp(∆m)

where the inequalities hold pointwise.
• There exists a constant c > 0 such that for any ∆ ∈ F with symbolic representation

η,

cµp(∆) ≤ ∥T ∗(η)∥1 ≤ µp(∆).

One may also observe that the same principle works for periodic points. We have
the natural analogue of Proposition 3.16:

Corollary 5.6. Let {Si}i∈I be any IFS and suppose x is a periodic point with period
θ = (e1, . . . , es). Then the local dimension of µ at x exists and is given by

dimloc µ(x) =
log sp(T ∗(θ))

logL(θ)
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where if x is a boundary point of a net interval with two different symbolic representations
given by periods θ and ϕ, then θ is chosen to satisfy

log sp(T ∗(θ))

logL(θ)
≥ log sp(T ∗(ϕ))

logL(ϕ)
.

Proof. The proof is identical to the proof of Proposition 3.16, noting that the
analogue of Corollary 5.5 holds since the set {V(∆) : x ∈ ∆,∆ ∈ F} is finite. □

5.3. An overlapping IFS with non-commensurable contraction ratios. Consider
the IFS given by the maps

S1(x) = ρ · x S2(x) = r · x+ ρ(1− r) S3(x) = r · x+ 1− r

where 0 < ρ, r < 1 satisfy ρ+ 2r − ρr ≤ 1, i.e. S2(1) ≤ S3(0). This IFS was initially
studied by [LW04] and was the first example of an iterated function system with
overlaps and satisfying the weak separation condition without commensurable
contraction ratios. It is known that the Hausdorff dimension of the attractor K is
the unique solution to the equation ρs+2rs−(ρr)s = 1 (see [LW04, Proposition 4.9]
or [LN07, Example 5.1]).

Under the assumption that ρ > r > ρ2, we will compute the neighbour sets
and the transition graph. We also give formulas to compute the range of local
dimensions. We will also show (for all valid parameters r, ρ) that any associated
self-similar measure satisfies the complete multifractal formalism.

5.3.1. Neighbour sets and the transition graph. We first compute the neighbour sets
and children in complete detail. The net interval ∆0 = [0, 1] has V(∆0) = {x 7→ x}
and tg(∆0) = 1 = m(∆0) · 1 since 1 is the maximal contraction ratio of any of its
neighbours. Thus ∆0 has children

(∆1 = [0, ρ(1− r)],∆2 = [ρ(1− r), ρ],∆3 = [ρ, ρ+ r − ρr],∆4 = [1− r, r])

in F1. Note that when ρ+ 2r − ρr < 1, [ρ+ r − ρr, 1− r] is not a net interval since
its interior does not intersect K. One may compute

V(∆1) = {x 7→ x/(1− r)} V(∆2) = {x 7→ x/ρ, x 7→ x/r +
1

r
− 1}

V(∆3) = {x 7→ x

1− ρ
+

ρ

1− ρ
} V(∆4) = {x 7→ x}.

Since V(∆4) = V(∆0), the children of ∆4 are scaled versions of the children of ∆0

and have the same neighbour sets by Theorem 2.8.
• Since ρ > r, ∆1 has tg(∆1) = m(∆1) · (1/(1− r)) = ρ, so ∆1 has children

(∆5 = [0, ρ2(1− r)],∆6 = [ρ2(1− r), ρ2],∆7 = [ρ2, ρ(ρ+ r − ρr)])

where V(∆5) = V(∆1), V(∆6) = V(∆2), and V(∆7) = V(∆3).
• ∆2 has tg(∆2) = ρ and one child ∆8 = [ρ− ρr, ρ] with V(∆8) = {x 7→ x, x 7→

x/ρ}. Note that ∆8 = ∆2, but V(∆8) ̸= V(∆2).
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FIGURE 1. Modified transition graph with edge lengths and transition
matrices

• ∆3 has tg(∆3) = r and two children (∆9 = [ρ, ρ+ r2 − ρr2],∆10 = [r − r2, r])
with V(∆9) = V(∆3) and V(∆10) = V(∆0).

• ∆8 has children ∆11 = [ρ−ρr, ρ−ρr2],∆12 = [ρ−ρr2, ρ] with V(∆11) = V(∆1)
and V(∆12) = V(∆2).

Thus by Theorem 2.8, there are no new neighbour sets and the IFS satisfies the
finite neighbour condition.

For simplicity, fix v0 = V(∆0), v1 = V(∆1), v2 = V(∆2), v3 = V(∆3) and
v4 = V(∆8). Let µp be a self-similar measure associated with the IFS, where
p = (p1, p2, p3). Observing that v4 has exactly one child, we can construct an
equivalent transition graph by removing v4, concatenating the incoming edges
with the outgoing edge, and multiplying the corresponding edge lengths and
transition matrices. This results in the modified transition graphs and edge lengths
described in Figure 1.

5.3.2. The attainable local dimensions. We see that the conditions for Corollary 4.13
are satisfied, so that the measure µp satisfies the complete multifractal formalism
and that the local dimensions at periodic points are dense in the set of upper and
lower local dimensions.

We now compute the range of local dimensions at periodic points. We first
make note of the following obvious inequality: if 0 < a, b, c, d and log a/ log b ≤
log c/ log d, then

(5.1)
log a

log b
≤ log ac

log bd
≤ log c

log d
.

Now let η be any cycle contained in G. If η only passes through v4, since
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spT ∗(e′11) = max{p2, p3}, the local dimension corresponding to the cycle (e′11) is
logmax{p2,p3}

log r
. Otherwise, η passes through some vertex other than v4. Thus without

loss of generality, η begins and ends and some vertex v ̸= v4. Suppose η visits some
vertex w ̸= v4 twice, i.e. η = η1η2η3 where η1 is a path from v to w, η2 is a cycle from
w to w, and η3 is a path from w to v. Then η can be written as a concatenation of
cycles η2 and η3η1, where T (η2) and T (η3η1) are singletons, and by (5.1), we have
that

min
{ log spT (η2)

logL(η2)
,
log spT (η3η1)

logL(η3η1)

}
≤ log spT (η)

logL(η)

≤ max
{ log spT (η2)

logL(η2)
,
log spT (η3η1)

logL(η3η1)

}
.

In other words, the minimum and maximum local dimensions on cycles are
attained at cycles which do not repeat any vertex other than v4. Thus it suffices to
consider all such families of cycles.

If η does not pass through v4, the only non-repeating cycles are (e3), (e4),
(e8), and (e2, e9). We thus see that the maximum and minimum possible local
dimensions are attained at the points in

S =
{ log p1
log ρ

,
log p2
log r

,
log p3
log r

}
.

Otherwise, η passes through v4. A straightforward induction argument shows
that

T ∗(e′11)
n =



(
pn3 0

p1p3(pn2−pn3 )

p2−p3
pn2

)
: p2 ̸= p3(

pn 0

npnp1 pn

)
: p2 = p3 =: p

.

Now, let

η1,n = (e6, e9, e
′
1, e

′
11, . . . , e

′
11︸ ︷︷ ︸

n

, e10) η2,n = (e′5, e
′
11, . . . , e

′
11︸ ︷︷ ︸

n

, e10)

denote the two possible families of cycles which go through v4 and do not repeat a
vertex not in v4. We then have that

an := spT ∗(η1,n) =

{
p1p2p3(p

n+2
2 −pn+2

3 )

p2−p3
: p2 ̸= p3

(2 + n)pn+2(1− 2p)2 : p2 = p3 =: p

bn := spT ∗(η2,n) =

{
p1(p

n+2
2 −pn+2

3 )

p2−p3
: p2 ̸= p3

(2 + n)pn+1(1− 2p)2 : p2 = p3 =: p

L(η1,n) = rn+4

L(η2,n) = ρrn+1.
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Let

amin = inf
n

log an
(n+ 4) log r

amax = sup
n

log an
(n+ 4) log r

bmin = inf
n

log bn
(n+ 1) log r + log ρ

bmax = sup
n

log bn
(n+ 1) log r + log ρ

.

Then the minimal local dimension is equal to

αmin := min
{ log p1
log ρ

,
log p2
log r

,
log p3
log r

, amin, bmin

}
.

and the maximal local dimension is equal to

αmax := max
{ log p1
log ρ

,
log p2
log r

,
log p3
log r

, amax, bmax

}
.

The parameters αmin and αmax can be determined exactly in many situations, but
generic solutions are tedious. Additional details are left to the reader.

5.3.3. The maximal open sets of the weak separation condition. Here we show, under
the same assumption ρ > r > ρ2 that the essential net interval [0, 1] ∩ K is not
contained in a union of open balls U0 satisfying the maximal value in (3.1). In fact,
we show that for any ϵ > 0, the open set (1−ϵ, 1)∩K is not contained a finite union
of such open balls. In addition, this shows that for any U(x, t) with #St(U(x, t))
maximal, we must have 1 /∈ U(x, t), whereas 1 ∈ K = Kess. A similar argument
gives this result for general parameters ρ and r, but the details are tedious and we
omit the proof.

We first note that supx∈R,t>0#St(U(x, t)) ≥ 5. To see this, take t = 1/4 and
U0 := U(1/4, 1/4). Then for each σ ∈ {11, 12, 13, 22, 23}, we have Sσ(K) ∩ U0 ̸= ∅
(since S13 = S21, we exclude the word 21).

To show that (1− ϵ, 1) ∩K is not contained in a finite union of maximal open
balls for each ϵ > 0, since 1 is an accumulation point for K it suffices to show
that if t > 0 and U(x, t) is any open ball such that x + t = 1, #St(U(x, t)) < 5.
A direct check shows that for t > 1/4, #St(U(x, t)) < 5. Otherwise, let m ≥ 1
be such that 1/4m+1 < t ≤ 1/4m. Since the rightmost child of [0, 1] is the net
interval [3/4, 1] ∈ Λ1/4 with V([3/4, 1]) = V([0, 1]), the net interval in generation t
containing 1 is the interval ∆ = [1− 1/4m, 1] which has V(∆) = V([0, 1]), and thus
U(x, t) ⊆ ∆′ = [1− 1/4m−1] where V(∆′) = V([0, 1]). But then up to normalization,
we know that the net intervals contained in ∆′ are the same as the net intervals
contained in [0, 1] so the case for general t reduces to the case t > 1/4.

5.3.4. On the multifractal formalism. We now dispense with the assumptions on
the parameters ρ, r and establish the following result.

Theorem 5.7. Any invariant measure µp associated with the IFS

S1(x) = ρ · x S2(x) = r · x+ ρ(1− r) S3(x) = r · x+ 1− r

where 0 < ρ, r < 1 satisfy ρ+ 2r − ρr ≤ 1 satisfies the complete multifractal formalism.
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Proof. By Corollary 4.13 and the following remark, since the IFS satisfies the
weak separation condition, it suffices to show that the vertex v0 := {x 7→ x} is
contained in the essential class. As argued in §5.3.1, the net interval [0, 1] has
children(

∆1 = [0, ρ(1− r)],∆2 = [ρ(1− r), ρ],∆3 = [ρ, ρ+ r − ρr],∆4 = [1− r, r]
)

in F1 with neighbour sets

V(∆1) = {x 7→ x/(1− r)} V(∆2) = {x 7→ x/ρ, x 7→ x/r +
1

r
− 1}

V(∆3) = {x 7→ x

1− ρ
+

ρ

1− ρ
} V(∆4) = {x 7→ x}.

In particular, there is an edge from v0 to v0. Moreover, since the word 23 is
in Λr, where S23([0, 1]) is disjoint from S3([0, 1]), S22([0, 1]), and S1([0, 1]) by the
assumptions on ρ and r, it follows that S23([0, 1]) is a net interval with neighbour
set v0. Thus there is an edge from V(∆3) to v0. Similarly, the words 11 and 12
are in Λρ, where S12([0, 1]) is disjoint from S2([0, 1]), so as computed in §5.3.1, the
children of ∆1 have neighbour sets V(∆1), V(∆2), and V(∆3). Since there is an
edge from V(∆3) to v0, there is a path from V(∆1) to v0.

It remains to consider the offspring of v2 := V(∆2). We will treat the case where
r > ρ; the case where r ≤ ρ follows by an analogous argument. Let m be maximal
such that rm > ρ. We will compute the net intervals in generation Λrm .

For 0 ≤ k ≤ m write

σk = 2 . . . 2︸ ︷︷ ︸
k times

1 τk = 2 . . . 2︸ ︷︷ ︸
k times

.

For simplicity, given t > 0, write Γt = {Sω : ω ∈ Λt, Sω((0, 1)) ∩ ∆2 ̸= ∅}. Note
that S2(S1(1)) = S1(1) where S1(1) is the right endpoint of ∆2, so that Sσk

(S1(1)) =
S1(1). Thus by choice of m, we have for k ≤ m

Γrk = {Sτk+1
, Sσ0 , Sσ1 , . . . , Sσk

}.

First assume rm+1 < ρ. Since rm+1 < ρ and S1([0, 1]) ⊇ ∆2 ⊇ ∆i, tg(∆i) = ρ.
Thus since S12(1) ≤ S2(0) and Sσ02 = Sσ1 , we have

Γρ = {τm+1, Sσ1 , . . . , Sσm}.

Since Sτ (0) > Sσm(1), the net intervals in Fρ contained in ∆2 are given, ordered
from left to right,

∆i = [Sσi
(0), Sσi+1

(0)] ∆m = [Sσm(0), Sτ (0)] ∆m+1 = [Sτ (0), Sσm(1)]

for 1 ≤ i < m. Since Γrm−1 = {S−1
2 ◦ g : g ∈ Γρ}, for each 1 ≤ i ≤ m + 1,

S−1
2 (∆i) ∈ Frm−1 with V(S−1

2 (∆i)) = V(∆i). But again S2 fixes the right endpoint
of ∆2, so that

∆2 ⊇ S−1
2 (∆i) ⊇ ∆j
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for each 2 ≤ i ≤ m+1. In particular, every child of V(∆i) is of the form V(∆j), and
there is a path from V(∆i) to V(∆1) for each i ≥ 2. Moreover, a direct computation
shows that V(∆1) = V(∆1), so there is a path from V(∆1) to v0. Thus there are
no new net intervals, and there is a path to v0 = {x 7→ x} from any vertex in the
transition graph, as required.

In the case rm+1 = ρ, we get

Γρ = {τm+2, Sσ1 , . . . , Sσm+1}

so that Γρ is a rescaled version of Γrm , and the argument follows similarly. □

5.4. On an example of Deng and Ngai. In [DN17, Example 8.5], Deng and Ngai
introduced the following IFS similar in structure to §5.3 but with an additional
overlap. Consider IFS defined by following four maps

S1(x) = ρx S2(x) = rx+ ρ(1− r)

S3(x) = ρ−1r2x+ (1− r)(ρ+ r) S4(x) = rx+ (1− r)

where 0 < ρ, r ∈< 1 satisfy r2 < ρ and ρ(r − 1)(ρ+ r − 1) > r2. The constraints on
ρ and r ensure that S3((0, 1)) ∩ S4((0, 1)) = ∅.

The parameters of this IFS are chosen so that S14 = S21 and S24 = S31. One can
verify, arguing similarly to Theorem 5.7, that G = Gess and hence any associated
self-similar measure satisfies the complete multifractal formalism.

5.5. A modified multifractal formalism for Cantor-like measures. Consider the
family of IFS given by maps{

Sj(x) =
x

r
+

j

mr
(r − 1) : 0 ≤ j ≤ m

}
where m ≥ r ≥ 2 and m, r are integers. This family of IFS, with appropriate
probabilities, contains rescaled versions of measures such as convolutions of
the usual Cantor measure. In particular, certain self-similar measures in this
family were among the first recognized for which the multifractal formalism can
fail [HL01]. The set of local dimensions is known to consist of a closed interval
and, with appropriate probabilities, an isolated point. The Lq-spectra have also
been computed, as well as a modified multifractal formalism [FL09; FLW05; LW05;
Shm05]; our results here are minor improvements of existing results and are
primarily useful as illustrations of the theorems.

Fix any IFS {Si}i∈I in this family with attractor K and associated self-similar
measure µ. Arguing similarly to [HHM16, Proposition 7.1], one may verify that
K = [0, 1], Kess = (0, 1), and

Km :=
⋃

∆∈Frm−1

V(∆)∈V (Gess)

=
[r − 1

krm
, 1− (r − 1)

krm
]
.
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Then Theorem 4.11 (weak regularity is always satisfied since K = [0, 1]) gives that
each µm := µp|Km satisfies the complete multifractal formalism and

D(µm) = {dimloc µp(x) : x ∈ (0, 1)}.

This provides an alternative proof of some of the results contained in [FLW05;
Shm05] (without the assumption k < 2r−2) and a variation of [FL09, Example 6.2].

From the perspective of Corollary 4.13, the obstruction to the multifractal
formalism is combinatorial: there is a cycle outside the essential class which
contributes a point with local dimension not contained in the closed interval
{dimloc µ(x) : x ∈ Kess}.
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