Geometric and Combinatorial Properties of
Self-similar Multifractal Measures

ALEX RUTAR

ABSTRACT. For any self-similar measure ; in R, we show that the dis-
tribution of y is controlled by products of non-negative matrices governed
by a finite or countable graph depending only on the IFS. This generalizes
the net interval construction of Feng from the equicontractive finite type case.
When the measure satisfies the weak separation condition, we prove that this
directed graph has a unique attractor. This allows us to verify the multifractal
formalism for restrictions of y to certain compact subsets of R, determined
by the directed graph. When the measure satisfies the generalized finite type
condition with respect to an open interval, the directed graph is finite and we
prove that if the multifractal formalism fails at some ¢ € R, there must be a
cycle with no vertices in the attractor. As a direct application, we verify the
complete multifractal formalism for an uncountable family of IFSs with exact
overlaps and without logarithmically commensurable contraction ratios.
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1. INTRODUCTION

Self-similar measures in R are perhaps the simplest examples of measures which
exhibit complex local structure. These measures are associated with finite sets of
similarity maps in R. To be precise, by an iterated function system of similarities (IFS)
we mean a finite set of maps {S; };cz where each S;(z) = 2 +d; and 0 < |r;| < 1.
The attractor, or self-similar set, of this system is the unique compact set K satisfying
Uiez Si(K) = K. Given a probability vector p = (p;);cz where each p; > 0 and
> . pi = 1,the associated self-similar measure is the unique Borel probability measure
satisfying

= Zpiﬂp © Sfl(E)

€L

for any Borel set £ C R. For a more through discussion of the background and
basic properties of self-similar sets and measures, we refer the reader to Falconer’s
book [ I

In order to understand the general structure of the measure p, or the self-
similar set K, one often considers basic dimensional quantities such as the Haus-
dorff dimension dimy K and analogous statements for measures, or other notions
of dimension. Computing these values can be highly non-trivial for general iter-
ated function systems of similarities and there is significant literature on this matter
(see, for example, | ; ; ; ; ; ; ; D. In
this paper, we focus on a more fine-grained notion of dimension known as the
local dimension. Given a point z € K = supp (i, the local dimension is given by

dimyec pp(x) = lim

when the limit exists. From the perspective of multifractal analysis, one is in-
terested in determining geometric properties of the sets K (o) = {z € K :
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dimye. ptp(7) = a}. On the other hand, the Li-spectrum of i, is given by

. . .logsup Ziﬂ (B(wivt))q
7(1tp, @) = 7(¢) = lim inf oz 1

for each ¢ € R, where the supremum is over disjoint families of closed balls with
centres x; € K.

An important objective of multifractal analysis is to understand the relationship
between the Li-spectrum of the measure i, and the dimension spectrum dimy K ().
A heuristic relationship between 7(¢) and dimyg K («), known as the multifractal
formalism, was introduced by Halsey et al. [ 1. The multifractal formalism
states, roughly speaking, that the dimension spectrum can be computed as the
concave conjugate of 7(g), i.e.

dimpg K (a) = 7%(a) = inﬂg{qa —7(¢)}
(IS
for any « in the domain of 7*(«); see Definition 4.2 for a complete definition in our
setting. This concave conjugate relationship has been studied by many authors (see
[ ; ; ; ; ; ; ; ; ; ; D
As a particularly elegant example, it has been verified in general for iterated
function systems satisfying the strong separation condition (S;(K) N S;(K) # @

if and only if ¢ = j) [ ]. This separation requirement has been relaxed to
the open set condition [ ] and the concave conjugate relationship has been
verified [ ; ; ]. In both cases, 7(q) is differentiable for all ¢ € R and
is determined uniquely by the implicit formula ), ; pfr, @0,

However, when the open set condition fails, outside specialized analysis of
some families of examples (for example, Bernoulli convolutions associated with
the unique positive root of the polynomial 2% —zF=1 —- .. —z — 1] 1), there has
been much less progress on verifying the multifractal formalism at all ¢ € R. For
q > 0, the function x — 27 is non-decreasing so the summation in the definition of
7(q) is dominated by closed balls with large measure. On the other hand, for ¢ < 0,
the summation is dominated by closed balls of small measure. Generally speaking,
understanding the multifractal analysis of measures when ¢ < 0 is substantially
more challenging than the case ¢ > 0. Gaining more information about this case is
our focus in this document.

1.1. The weak separation condition. Notably, neither the strong separation con-
dition nor the open set condition allows for the existence of exact overlaps. We
introduce some notation: let Z* denote the set of all finite words on Z. For
o= (i1,...,i,) € I, write S, = S;; 0---08; , 1, = ry- -1, and, if n > 1,
0~ = (i1,...,1n—1). By exact overlaps we mean the existence of words ¢ # 7 € Z*
such that S, = S;. To study examples allowing exact overlaps while still main-
taining separation of non-overlapping words, Lau and Ngai introduced the weak
separation condition and studied basic conditions under which the multifractal
formalism holds [ ]. For any ¢t > 0 and Borel set £ C R, define

MNE)={c€T" i1, <t<r,—,S,(K)NE # &}.
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Then the weak separation condition is equivalent to requiring that

(1.1) sup #{S, :0 € A(U(x,t))} < 0

z€R,t>0

where # X denotes the cardinality of a set X and U(z, ) is the open ball about
x with radius ¢. Note that the definition only considers functions S, rather than
the words o so as to allow exact overlaps. To see an equivalent formulation with
respect to exact overlaps or the equivalence with the original definition of Lau and
Ngai, see [ , Theorem 1].

Under the weak separation condition, verification of the multifractal formalism
is subtle. One of the earliest examples of exceptional behaviour is with respect
to self-similar measures of the system of Bernoulli convolutions {z — pz,z
px + (1 — p)} where the contraction ratio p is the reciprocal of the golden mean.
In this case, the Li-spectrum 7(q) has a phase transition, or a point where 7(q) is
not differentiable. Nevertheless, the multifractal formalism still holds and 7(q) is
analytic for other values of ¢ [ ]. Another example of exceptional behaviour is
the 3-fold convolution of the uniform Cantor measure. In this case, it was observed
that the set of attainable local dimensions is not an interval and the multifractal

formalism fails [ ]. The problem here is, in some sense, that the measure 1, is
too small at certain points in K. This measure, and other related measures, were
studied in detail [ ; ; ; ] and a modified multifractal

formalism was proven therein. In these cases, the failure occurs at some point
q < 0.

In an important paper, Feng and Lau [ ] obtain deep results about the
multifractal formalism under the weak separation condition. Using a subtle
Moran construction [ |, they prove that the multifractal formalism holds for
any value ¢ > 0, and for ¢ < 0, they give a modified multifractal formalism by
considering suitable restrictions to an open ball U, which attains the supremum
in the definition of the weak separation condition (1.1). Unfortunately, this result
does not directly give information on the validity of the multifractal formalism
for values ¢ < 0. In some sense, the restriction avoids the breakdown of the
multifractal formalism by avoiding points in K where the measure is too small.

To extend this perspective, we develop some new ideas. Even in regions where
the overlap is not dense (i.e. away from any maximal open ball Uj), through a gen-
eral graph construction, we will show that the measure may be “combinatorially
linked” to regions with high density where the multifractal formalism holds. For
example, consider the IFS given by the maps

(1.2) Si(z) = px So(z) =rax + p(l —r) Sy(z)=rx+1—r

where p > 0, r > 0 satisfy p + 2r — pr < 1. This IFS was first studied by Lau
and Wang [ ] and satisfies the weak separation condition. In §5.3.3, we show
that the maximal open sets Uj can never contain the point 1 in the self-similar
set, which is a phenomenon similar to the situation of the Cantor convolution.
Despite this, we can prove (as a consequence of our more general results) that
the multifractal formalism still holds for the measure ., without restriction to a
subset and with any probabilities. Our main goal in this paper is to provide a new,
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natural perspective for understanding the failure of the multifractal formalism,
and to provide combinatorial conditions under which the multifractal formalism
holds or in which one might suspect that fails.

Our starting point is the net interval construction of Feng [ ]. In that
document, for iterated function systems of the form {z — 7z + d;};ez With
0 < r < 1 satisfying a combinatorial overlap condition known as the finite type
condition [ ], he obtains formulas for the values of ji,(A) on families of inter-
vals F,, as products of non-negative matrices. He then uses properties of matrix
products to verify differentiability of the L?-spectrum (and thus the multifractal
formalism by the prior work of Lau and Ngai [ ]) for values ¢ > 0. Using
some different perspectives but with the same underlying approach, he proves a
modified multifractal formalism for values of ¢ < 0 [ 1.

In recent work, following the techniques of Feng and operating in the same
setting, Hare, Hare, and various collaborators [ ; ] define a finite
graph called the transition graph corresponding to the IFS. Then they determine
that the set of local dimensions at special points in K called interior essential points
form a closed interval, and show that the failure for the set of local dimensions
to be a closed interval is determined by the existence of certain combinatorial
structures in the transition graph called non-essential loop classes.

However, as observed by Testud [ ], when the IFS does not have a com-
mon contraction ratio or a similar property (for example, logr;/logr; € Q for all
i, 7 [ 1), one cannot apply Feng’s net interval construction in a natural way.

1.2. Summary of main results. Our first contribution is a generalization of the
net interval construction to apply to any IFS of similarities. We determine that the
distribution of ji;, on certain intervals which we call net intervals is determined
by a local overlap structure which we call the neighbour set of the net interval
(see [ ] for the first appearance of this construction). Our first key ob-
servations, Lemma 2.3 and Theorem 2.8, are that the neighbour set completely
determines the local geometry of the attractor K and the distribution of the mea-
sure /i, (up to fixed constants of comparability). This allows us in §2.4 to construct
a countable directed graph which we call the transition graph of the IFS, where the
vertices are the distinct neighbour sets. Then in §2.5, we associate to each edge of
the transition graph a non-negative matrices called a transition matrix such that
the distribution of 1, on net intervals is given by products of these non-negative
matrices. Since we do not make any assumptions on the contraction ratios, we
introduce two simple but important ideas: the notion of the transition generation
(Definition 2.4), and the notion of the length of an edge (Definition 2.9). These
definitions resolve the issues with the original net interval construction recognized
above.

In §3, we turn our attention to the IFSs satisfying the weak separation condition.
In particular, we prove the existence of a relatively open subset K.i; C K called the
set of interior essential points, and a corresponding subgraph of the transition graph
called the essential class on which the self-similar measure has certain important
regularity properties (Lemma 3.10). We call a net interval essential if its neighbour
set is a vertex in the essential class. We determine that the set of interior essential
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points is large in two different senses:

Theorem 1.1. Let {S;},cr be an IFS satisfying the weak separation condition.
(i) If Uy is any open set which attains the supremum in (1.1), then K N Uy is contained
in a finite union of essential net intervals. In particular, K N Uy C K.
(ii) If p, is any associated self-similar measure, then fi,(K \ Kess) = 0.

See Proposition 3.7 and Theorem 3.11 for proofs of these facts.

We also obtain dimensional results at certain points in K called periodic points,
an idea introduced by Hare, Hare, and Matthews. In Proposition 3.16, we prove
that an elegant formula holds for the local dimensions at such points, and in
Theorem 4.1 we show that the sets of local dimensions at periodic points are dense
in the sets of upper and lower local dimensions at points in K. This generalizes
a pre-existing result [ , Corollary 3.15] to the weak separation case.

We then focus on understanding the multifractal formalism from the perspec-
tive of the essential class. We introduce the notion of weak regularity in Defini-
tion 4.3. Our main result in this section is the following (see Theorem 4.11 for a
complete statement and proof):

Theorem 1.2. Let {S;};cr be an IFS satisfying the weak separation condition and let ju,
be an associated self-similar measure. Let E = Ay U - -- U A, be a finite union of essential
net intervals such that E N K is weakly reqular. Then v = p,|p satisfies the multifractal
formalism and

(1.3) {dimye. v(z) : x € supp v} = {dimjec pip(z) : T € Kegs}-

Moreover, the values of T(v, q) do not depend on the choice of Ay, ..., A, and for ¢ > 0,
T(kp: q) = 7(v, Q).

Our verification of this modified multifractal formalism begins with [ ,
Theorem 1.2], but then uses the matrix product structure of the transition graph to
move the weight of the measure from the sets U, to any net interval in the essential
class. We note some minor improvements: rather than considering restrictions of
the Li-spectrum to an open set, we obtain the results as a restriction to a compact
subset A; U---UA,, where this subset can strictly contain a neighbourhood of any
open set Uy attaining the maximum in (1.1) (combine Theorem 1.1 and Lemma 4.6).

In fact, our matrix product structure provides a more general perspective for
understanding the quasi-product property of Feng and Lau [ |; a natural
analogue holds in our setting where their set (2 is replaced by a set of net intervals
which have the neighbour of a fixed essential net interval. As a result, a more direct
proof of Theorem 1.2 is possible. However, many details of this proof overlap with
the approach of Feng and Lau, so we do not include this approach.

Combining this result with Theorem 1.1, we prove the following modified
multifractal formalism for any IFS satisfying the weak separation condition:

Corollary 1.3. Let {S;}icz be an IFS satisfying the weak separation condition with
associated self-similar measure ji,,. Then there exists a sequence of compact sets (K)o,
with K., C K,,41 C K for each m € N such that

(1) im0 pip(Kim) =1,
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(ii) each pu,, = up|K,, satisfies the multifractal formalism, and
(iii) T(m, q) and D(p,,) do not depend on the index m.

We note the similarity of this result to a result of Feng [ , Theorem 1.2], which
follows from general results about the multifractal formalism of certain matrix-
valued functions satisfying an irreducibility condition. However, the techniques
used therein only apply naturally in the finite type case for IFSs of the form
{l’ =TT+ di}iel-

We also obtain the following important corollary:

Corollary 1.4. Let {S;}icz be an IFS satisfying the weak separation condition with
transition graph G. Suppose there is a bound on the maximum length of a path with no
vertices in the essential class. Then any associated measure ji,, satisfies the multifractal
formalism.

In particular, suppose G is finite. In this situation, the only mechanism for the
failure of the multifractal formalism is the existence of a cycle (a path in the
transition graph which begins and ends at the same vertex) which is not contained
in the essential class. This gives a combinatorial condition which guarantees that
the multifractal formalism holds. In this situation, it is possible to write a finite
algorithm to determine whether such a cycle exists.

In particular, in Theorem 5.7, we apply this to the family of IFS defined in (1.2):

Corollary 1.5. Let {S;}?_, be the IFS defined in (1.2). Then for any probability weights
p = (pi)}_,, the associated self-similar measure yu,, satisfies the complete multifractal
formalism.

To the best knowledge of the author, this is the first example of an IFS with exact
overlaps and without logarithmically commensurable contraction ratios for which
the complete multifractal formalism is proven to hold. Understanding failure of
the multifractal formalism is based critically on understanding the properties of
cycles in the transition graph outside the essential class.

By combining our results with the work of Deng and Ngai [ I, we can
also gain information about differentiability of the Li-spectrum. In a slightly
specialized case, [ , Theorem 1.2] states that, for probabilities ps > ps,

fla) = dimp{z € K : dimye. pp(x) = a}

is the concave conjugate of a differentiable function. Combining this with Corol-
lary 1.4 and involutivity of concave conjugation, we obtain the following result:

Corollary 1.6. Let {S;}? | be the IFS defined in (1.2). Then if p, > ps, the Li-spectrum
7(tp, q) 1s differentiable for any q € R.

This answers some of the questions raised in [ ].

Finally, in §5, we investigate some specific families of IFSs to illustrate these
results; notably, we give an in-depth analysis of the IFS given in (1.2). In fact,
every example in that section has a finite transition graph: this is equivalent to the
generalized finite condition of Lau and Ngai [ ] holding with respect to an
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open interval (see [ , Theorem 3.4] and Remark 5.2 for a proof). Moreover,
when K is a convex set, a recent result gives that the weak separation condition
is equivalent to the finiteness of the transition graph [ , Theorem 4.4] (see
also [ ]). In general, the author believes this to be true without any convexity
assumption on K:

Conjecture 1.7. Let {S;},er be an IFS in R with transition graph G. Then {S;}icr
satisfies the weak separation condition if and only if G is finite.

The results obtained in this paper under the weak separation condition, and the
similar strength to results proven under various finite type conditions, provide
some more evidence towards this equivalence in general.

1.3. Limitations and future work. We note here that the Corollary 1.4 is not
a dichotomy. While the non-existence of cycles outside the transition graph
guarantees that the multifractal formalism holds, the converse need not hold.
We have examples of measures satisfying the open set condition (with respect
to an open set that is not an open interval) with cycles outside the essential
class, while the open set condition guarantees that the multifractal formalism
does hold. This situation is likely a by-product of the net interval construction,
since our perspective is always with respect to images of the entire interval [0, 1].
However, there are also cases such as the Bernoulli measure associated with the
IFS {z — pz,x — px+ (1 —p)} where 1/p is the Golden mean. In this situation, the
attractor is the entire interval [0, 1] so that the net interval construction is a natural
choice. Here, even though the L9-spectrum contains a point of non-differentiability
at some ¢y < 0 and contains a cycle not contained in the essential class, the measure
still satisfies the multifractal formalism [ ]. These phenomena, and other
related special cases, are studied in recent work of Hare, Hare, and Shen [ ].

More work is needed to address the general case. In [ ], the author
investigates the multifractal analysis of measures when the transition graph is
tinite to provide a more detailed understanding of such examples. In particular, we
obtain a greater understanding of the multifractal formalism outside the essential
class as a continuation of our analysis here.

1.4. Notational conventions. We briefly mention here some of the conventions
we use through out the document. Given any set X, we write #.X to denote the
cardinality of X. The set R is always the metric space equipped with the usual
Euclidean metric. The set N is the set of natural numbers beginning at 1. The set
B(z,t) is always a closed ball about x with radius ¢, and U(z, t) denotes the open
ball. Let £, F' C R be Borel sets. We denote by diam(E) = sup{|z —y| : 2,y € E}
and dist(E, F) = inf{|z —y| : v € E,y € F}. Given § > 0, we write E® = {z € R :
dist(x, E) < 6}. By £°, we mean the topological interior of E.

Boldface quantities are typically vectors. If M is a square matrix, we denote
by sp(M) the spectral radius of M and || M| = >_, ;| M, ;| the matrix 1-norm. If v,
w are vectors with the same dimension, we write v < w if v; < w; for each i. All
matrices in this document are non-negative.
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Given families of real numbers (a;);c; and (b;);c;, we write a; < b; if there exist
constants ¢q, ¢o > 0 such that cja; < b; < cea; foralli € 1.

The maps {5, }:cz always denotes an iterated function system. We assume that
#7 > 2 and its attractor K is not a singleton. Sets denoted by A are closed intervals
and often net intervals. Indices s,t are used to refer to generations and radii of
open and closed balls. Greek letters o, 7,w, ¢, { typically refer to words in Z*. The
Greek 7 typically refers to a path in the transition graph. The character 7" refers to
either a transition matrix or, more occasionally, a similarity map, depending on
context.

2. ITERATED FUNCTION SYSTEMS THROUGH NET INTERVALS

2.1. Iterated function systems of similarities in R. Let Z be a non-empty finite
index set. By an iterated function system of similarities (IFS) {S;};cz we mean a
finite set of similarities

(2.1) Si(x) =rix+d;: R— Rforeachi € Z

with 0 < |r;| < 1. We say that the IFS is (positive) equicontractive if each r; = r > 0.
Each IFS generates a unique non-empty compact set K satisfying

K = JSi(K).

1€l

This set K is known as the associated self-similar set. Throughout, we will assume
K is not a singleton. By rescaling and translating the d; if necessary, without loss
of generality we may assume the convex hull of K is [0, 1].

Given a probability vector p = (p;)icz where p; > 0 and )., p; = 1, there
exists a unique Borel measure 11, with supp p, = K satisfying

(2.2) 1p(E) = pipip(S; ' (E))

1€T

for any Borel set E C K. This measure ji,, as known as an associated self-similar
measure.

Let Z* denote the set of all finite words on Z. Given o = (04, ...,0;) € T, we
denote

0" = (01,...,0j-1),8 = Sy 008, and ro =715, -+ -7,

Givent > 0, put
AN={oceZ :|r,| <t <|ry-|}

We refer to the set of 0 € A; as the words of generation t. We remark that in the
literature it is more common to see this defined by the rule |r,| < t < |r,-|. The
two choices are essentially equivalent, but this choice is more convenient for our
purposes.
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2.2. Neighbour sets. The notions of net intervals and neighbour sets were in-
troduced in [ ]and [ ]. In[ ], these notions were extended
to an arbitrary IFS, and we present those definitions here. We then continue the
discussion to define the children of a net interval, and show in Theorem 2.8 that
the children depend only on the neighbour set of the parent.

Let hq, ..., hyy) be the collection of distinct elements of the set {.5,(0), 5,(1) :
o € A} listed in strictly ascending order; we refer to this set as the endpoints of
generation t. Set

Fo={[hj, hjt1] : 1 < j < s(t)and (hy, hjt1) N K # o}

Elements of F; are called net intervals of generation t. Write F = J,. , F; to denote
the set of all possible net intervals.

Suppose A € F. We denote by T the unique contraction Tx(z) = rx + a with
r > 0 such that

Ta([0,1]) = A.

Of course, r = diam(A) and a is the left endpoint of A.

Definition 2.1. We will say that a similarity f(z) = Rz + a is a neighbour of A € F;
if there exists some o € A, such that S,(K)NA° # @gand f = Tx' o S,. In this
case, we also say that S, generates the neighbour f. The neighbour set of A is the
maximal set

Vi(A) ={f1- - fm}

where each f; = T\' o S,, is a distinct neighbour of A.

Since K = J,¢,, S-(K), every net interval has a non-empty neighbour set.

If o generates a neighbour of A, then S,([0,1]) 2 A. When the generation of
A is implicit, we will simply write V(A). For notational convenience, we define
the quantity Ry.x(A) = max{|R| : {z — Rz + a} € V(A)}, which depends only
on V(A).

Remark 2.2. For an IFS of the form {S;(z) = rz + d;},cz where 0 < r < 1 is fixed,
the notion of a neighbour set is related to the characteristic vector of Feng [ I
We describe the equivalence here.

Let A = [a, b] € F, be some net interval and let n be such that r™ < t < r"~!. Let
o1,...,0n, generate distinct neighbours of A, so that r,, = r" foreach 1 < i < m.
Then the (reduced) characteristic vector of A (see [ , Section 2] for notation)
is determined by

ly(A) = r " diam(A) Va(A) = {r""(a — S5(0)) : 1 <i<m}.
whereas the neighbour set of A is given by

Sy, (x) —a

R i e e NS
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x N Sy;(0) —a

={re r—7diam(A)  diam(A) b

Thus, when the IFS has a common positive contraction ratio, our neighbour
set construction can be interpreted directly as a normalized version of Feng’s
characteristic vector.

When the IFS has arbitrary contraction ratios, there is no clear choice of normal-
ization factor analogous to ¢,,(A) that is uniform across all net intervals A € F,.
This issue is resolved by normalizing directly by diam(A), but now it is no longer
clear how to define the children of a net interval in a global way. Instead, a
local definition for the children of net intervals, and the analogue of [ ,
Lemma 2.1], are given in §2.3.

Neighbour sets of net intervals are relevant in the sense that they completely
determine the local geometry of K in the net interval, as well as the behaviour of
associated self-similar measures on Borel subsets of the net interval. To be precise,
we have the following lemma:

Lemma 2.3. Let {S;}ez be an IFS as in (2.1) with attractor K and associated self-similar
measure ji,. Suppose Ay, Ay are net intervals with V(A;) = V(Ay). Then there exists a
surjective similarity g: Ay N K — Ay N K and constants ¢y, ¢ > 0 such that if E C /A,
is any Borel set,

cuip(E) < ppl9(E)) < capp(E).

Proof. By definition of the neighbour set, if A is any net interval, we have

ANK = |J (Tao f(K))NA.
fev(a)

Set g = T, o T, so that g is clearly a similarity, and applying this observation to
A; and A,, we have

g A NEK)= | g9Ta o f(K)NA) = | (90Ta, o f(K)) Ng(A)

fev(ai) fev(ay)
= |J (Taof(K)NAy=MNK.
fev(Aa)

Thus g is a surjective with the correct image.
We now verify the measure property. By the invariant property of the self-
similar measure (2.2), if A € F; is any net interval and £ C A is any Borel set,

ip(E) =Y pottpo S;HE) = Y pp(fHeTRNE) Y o

oEN; fevia) o€
o generates f

Since f is a neighbour of A, there is at least one ¢ generating f. In particular,
say Ay € Fi, and A, € Fy,, write V(A1) = V(As) = {f1,..., fm}, and set for each
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1<i<mandj=1,2

Gij = Z ps > 0.

O'EAtj
o generates f;
Set ¢; = min{g;2/¢;1 : 1 <i < m}. We then have for £ C A, that g(E) C Ay so
that

[
Ms

1p(9(E)) o (fi ' o Ta, 0 9(E)) iz

-.
Il

I\/
MS =

pp(fi 0 TA (E))gin = crpip(E).

i=1

Similarly, we have i, (g(E)) < copp(E) where ¢c; = min{g;1/gi2: 1 <i<m}. O

We will revisit these ideas in §2.5.

2.3. Children of net intervals. Let A € F have neighbourset{fi,..., f,,}, and for
each i, let S, generate the neighbour f; (recall that this means that S, (K)NA° # @
and f; = Tx'0S,.).

Definition 2.4. We define the ancestral generation of A, denoted ag(A), and the
transition generation of A, denoted tg(A), to be positive real values such that

Al
i=1

Note that 0 < tg(A) < 1;if A = [0, 1], we say ag(A) = oo. It is straightforward
to verify that

* tg(A) = Rpax(4) - diam(A),

o e (tg(A),ag(a)],

e forany s € (tg(A),ag(A)], A € Fsand V5(A) = V,(A), and

o if s ¢ (tg(A),ag(A)], either A ¢ F; or Vi(A) # Vi(A).

Lett > 0and A € F,. Let (Aq,...,A,) € Fig(a) be the distinct net intervals,
ordered from left to right, of generation tg(A) contained in A. Note that either
n > lorif n =1, then V(A) # V(A,). Then we call the tuple (Aq,...,A,) the
children of A € F;. Note that for any child A; of A, ag(A;) = tg(A).

Similarly, we define the parent of A € F; to be the net interval A € F, with
s > t where A is a child of A.

] = (te(A), ag(A)]

Remark 2.5. One way to think about the children of a net interval is as follows.
Enumerate the points {[],.; [7{"| : a; € {0} UN} in decreasing order (¢;)°,. Since
tg(A) = |r,| for some o € Z*, the transitions to new generations must happen at
some t;. However, if A € F, , it may not hold that tg(A) = ¢;.4. The children are
the net intervals in generation ¢,, where m > k + 1 is minimal such that either
A ¢ F orV, (A)#V (A).

If the IFS is of the form {z — rz + d; };c7 for some fixed 0 < r < 1 and A € Fn,
then tg(A) = "t
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Example 2.6. For a worked example of neighbour set and children computations
of a non-commensurable IFS, see §5.3.

A key feature of the preceding definitions is that, in a sense that will be made
precise, the neighbour set of some net interval A € F, completely determines the
placement and the neighbour set of each child of the net interval.

Definition 2.7. Suppose A = [a,b] € F has children (A4,...,A,) in generation
tg(A). For some fixed child A; = [a;, b;], we define the position index q(A, A;) =
(a; — a)/ diam(A).

One purpose of the position index is to distinguish the children of A which have
the same neighbour set.

We have the following basic result. The insight behind this result is straightfor-
ward. The children of a net interval are determined precisely by the words which
generate the neighbours of maximal length. Up to normalization by the position
of A, these correspond uniquely to the neighbours of A with maximal contraction
factor.

Theorem 2.8. Let {S;};cr be an arbitrary IFS. Let A € F, have children (Ay,..., A,)
in Figay. Then for any A" € F, with V(A) = V(A') and children (AY,...,A!)) in
Fig(ary, we have that n = n' and for any 1 <i < n,

(i) V(A =V(A),

(ii) q(A', &) = q(A, Ay),

... diam(Af) diam(A;)
(ZZZ) diam(A’) diam(A) / and
L te(Ay)  te(A]

(iv) tg(A)  tg(Ai)”

Proof. Given a map f(z) = rz + d, we set R(f) = |r|.

Write V(A') = V(A) ={f1,..., fm}, and let
W ={Tnr o f; : R(f;) = Rnax(A"),1 <i <m}
W ={Taro fi: R(fi) = Runax(A),1 <i<m}

denote the corresponding sets of neighbours corresponding to functions with
maximal contraction factor, where R,,.x(A’) = Ruax(A). Then let

C = {ST T E Atg(A/),ST(K) N (A/)o 7& @}
C= {ST T E Atg(A),ST(K) NA° # @}.

In other words, C is the set of words of generation tg(A) which contribute to some
child of A, and similarly for A’. Using the observation that the only new words
are those which are one-level descendants of those which generate neighbours of
maximal length, we have

C={foS;:feW, foS;(K)NA°# &} U{Ty" o fi: R(fi) # Rmax(A)}
(23) ={TaoTx 'of:fel}.

Note that, in the above set of equalities, we use the fact that for f € W

foSi(K)NA°# @ <= Tx'ofoS;(K)N(0,1)#o
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<~ TA/ OT;lofOSj(K) N (A/>O # %]

where Thr o T o f € W'
Write A = [a,b] and A" = [@/, b']. Now consider the set H = {a,b} U{f(0), f(1) :
f € C} N A so that H is the set of all endpoints of generation tg(A) contained
in A. Then if H' = {a/,0'} U {f(0), f(1) : f € C'} N A’, we observe by (2.3) that
T (H') =Tx'(H). Leta = hy < --- < hy1 = b denote the ordered elements of
Hand da = h| <--- < hj, =0 the ordered elements of ' where k = |H| -1 =
|H'| — 1. By Lemma 2.3, (h;, h;+1) N K # @ if and only if (h], h},,) N K # @. Thus
the children of A are {[h;, hit1] : (hi, hiv1) N K # @} and the children of A’ are
{TA/ o TA_l([h“ hi+1]) . (hl, hi+1) NK 7é @}, sok=n=n'
Now fix some 1 < i < n. Note that T o Ty (A)) = A;so that Ty o Ta o Ty =
Ty
(i) By direct computation,
V(A = {T5to f: feC, f(K)NAS + o)
= {TA_iloTAoTA_,lof fed,
TaoTx' o f(K)N (Ta o ThHA)) # @}
={Ty' of : feC, f(K)N(A)° # o}
= V(&)

(ii) Since the T are isometries, (A, A,) d?;r;&) = Tx*(h;) since Ty'(hy) = 0.

Then the result follows since Tx ' (h;) = T/ (h)).

(iii) We have

diam(A;)
diam(A)

_ diam(Aj)

= diam(T;'(4;)) = diam(T;' (A))) = Jiam (&)

)

(iv) Recall that for an arbitrary net interval, tg(Ag) = Rumax(Ao) - diam(A() where
Riax(Ag) depends only on V(Ag). Apply (i) and (iii).

We thus have the desired result. OJ

2.4. The transition graph of an iterated function system. In the context of Theo-
rem 2.8, to understand the behaviour of the IFS, it is in a sense sufficient to track
the behaviour of the neighbour sets. Thus, we construct the transition graph of
the IFS. The transition graph is a directed graph G({S;}.cz), possibly with loops
and multiple edges, (denoted by G when the IFS is clear from the context) de-
fined as follows. The vertex set of G, denoted V' (G), is {V(A) : A € F}, the set
of distinct neighbour sets. The edge set of G, denoted E(G), is a set of triples
(v1, v2, ) where v, is the source vertex, v, is the target vertex, and ¢ is the edge
label to distinguish multiple edges. The edges are given as follows: for each net
interval A € F, with children (A4,..., A,,) and for each i, we introduce an edge
e = (Vi(A), Viga)(Ai), q(A, A;)). By Theorem 2.8, this construction is well-defined
since it depends only on the neighbour set of A.
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An (admissible) path 1 in G is a sequence of edges n = (e, ..., e,) in G where the
target of e; is the source of ¢; 1. A path in G is a cycle if the path begins and ends at
the same vertex.

We can encode the behaviour of the IFS symbolically using the transition graph.
Given A € F;, consider the sequence (A, ...,A,) where Ay = [0,1], A, = A,
and each A, is a child of A,_;. Then the symbolic representation of A is the path
n=(ey,...,e,) of Gwhereforeachl <i<mn

€ = (V(Aifl)av(Ai)aQ(Aifla Az))

Conversely, if 7 is any admissible path, we say that (A;)F, is a (net interval)
realization of 1) if

* each A;isachild of A;_;, and

* eache; = (V(Ai—1), V(A), q(Ai—1, A))).

By construction, every admissible path has a net interval realization.

Now let x € K be arbitrary and let (A;);°, be a sequence of nested intervals
where Ay = [0,1] and A;;; a child of A; and {z} = (2, A;. The symbolic repre-
sentation of x corresponding to sequence (A;):°, is the infinite path (e;)2; where
for each n, (ey,...,e,) is the symbolic representation of A,. The symbolic repre-
sentation uniquely determines z, but if = is an endpoint of some net interval, it
can happen that there are two distinct symbolic representations.

Suppose {S;}icr is of the form {x — 7z + d;}icz where 0 < r < 1. Then if
A € F,is any net interval with symbolic representationn = (e, ..., e,), tg(A) = r"
and r" < t < r"1. In other words, given the symbolic representation, we can
approximate the generation of A.

However, when the IFS is not of this form, paths with the same length can result
in net intervals in substantially different generations, and if the contraction ratios
are not logarithmically commensurable (i.e. logr;/logr; € Q for any i,j € I),
there is no way to resolve this in a uniform way. Thus in order to approximate the
change in generation along a path in the transition graph, it is necessary to assign
distinct values to the edges in the transition graph.

Definition 2.9. Let G be the transition graph of an IFS. We define the edge length
function L : E(G) — (0,1) as follows. For a particular edge e, let the source and
target be given by v, and vy, where v; = V(A;) for some A, the parent of A,, and
define L(e) = tg(Aq)/ tg(Ay).

This function is well-defined by Theorem 2.8. When 1 = (e, ..., e,) is an admissi-
ble path, we say L(n) = L(e1) - - - L(ey,).

Remark 2.10. If {S;};c7 is of the form {z — rz + d;};cz where 0 < r < 1, then
L(e) = r for any edge e € E(G).

The main point here is that if A € F; is any net interval with symbolic repre-
sentation 7, then L(n) =< t with constants of comparability not depending on A.
While the above choice of the length for an edge is not unique with this property,
a straightforward argument shows that any such function must agree with L on
any cycle.
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2.5. Encoding the invariant measure by the transition graph. Given an IFS
{S;}iez with a corresponding invariant measure ,,, we are interested in formulas
for computing or approximating 1i,(£) where £ C K is an arbitrary Borel set.
When {S,};cz satisfies the strong separation condition (that is, for i # j, S;(K) and
S;(K) are disjoint), this is straightforward since 1, (S,(K)) = p,. However, when
images of K overlap, such a formula no longer holds.

The net interval construction can be thought of as a way of converting the
behaviour of the IFS on overlapping images of K into behaviour on net intervals,
which are disjoint except on a countable set (which has ji,-measure 0). It turns
out that one may also encode the dynamics of the invariant measure p, using
products of matrices. This technique was developed in the equicontractive case for
IFS of the form {z — rz + d; };cz with 0 < r < 1 by Feng [ ], and extended
to IFS which satisfy the finite type condition [ ]. Using similar techniques,
we describe here how to generalize this construction to an arbitrary IFS.

Let {S; }icz be an IFS and ju, the self similar measure associated to probabilities
{pi }iez. The main mechanism to compute the approximate measure of net intervals
is through transition matrices. Recall that G has vertex set V(G) = {V(A) : A € F}.
Fix some total ordering on the set of all neighbours {f : f € V(A),A € F}.

Let e € E(G) be a fixed edge with source v; and target vo. Suppose A; O A, are
net intervals such that A, is the parent of A, and e = (V(A;), V(Aq), ¢(A1, Ag)).
Suppose the neighbour sets are given by V(A;) = {fi1,..., fn} and V(Ay) =
{91,.-.,9n} where f; <--- < f,and ¢; < -+ < g,,. We then define the transition
matrix T'(e) as the non-negative m x n matrix given by

1((0,1))
(2.4) T(G)i,j = w “De

if there exists an index ¢ € 7 such that f; is generated by ¢ and g; is generated
by o/; otherwise, set T'(e);; = 0. This is well-defined since a neighbour f has
f71((0,1)) N K # @ by definition. Recall that if o’ generates any neighbour of A,,
then necessarily o’ = o/ for some o which generates a neighbour of A;; thus, every
column of T'(e) has a positive entry. However, it may not hold that each row of
T (e) has a positive entry.

It is clear from Theorem 2.8 that this definition depends only on the edge e. If
n = (e1,...,e,)is an admissible path, we define 7'(n) = T'(e;) - - - T'(ey,).

Example 2.11. See §5.3 and Figure 1 for a complete transition graph example.

Throughout, we will denote by ||T'|| = 3_, ; |T};] to denote the matrix 1-norm.
Suppose A € F; is an arbitrary net interval. From the defining identity of the
self-similar measure,

(D) = popp(S, 1 (A))

oEN:

where, since /i, is non-atomic, the summation may be taken over o such that
S-1(A°) N K is non-empty. Note that S;*(A°) = S, 1 o TaA((0,1)) = f71((0,1))
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where f € V(A). We thus have
(2.5) pp(A) = Y mp(fH0.1) D> b

fev(a) o€t
o generates f

Let V(A) ={f1,..., fm} with f; <--- < f,,; then, we denote the vector form of i,
by QP(A) = (qu cee aQW’L) Where

qi = /Lp(fiil((ov 1))) Z Do

oEN:
o generates f;

In particular, Q,(A) is a strictly positive vector for any A, and p,(A) = [|Qp(A)]|.
With this notation, we have the following theorem:

Theorem 2.12. Let {S;}ic7 have associated self-similar measure ji,,. If 1 is any admissible
path realized by (A;)i~,,

Qp(A0)T(n) = Qp(An).

Proof. Suppose Ay € F; and A,, € F,. Say V(Ag) = {f1,..., fe} with f; <

- < frand V(A,) = {91,.--,9m} With g1 < -+ < g,,. For each ¢, assume 7;

generates the neighbour f;, and set A;; = {w : ;w € A,, 7w generates g;}. Then
for any 1 < j < m, we have

14

(@BaTm), =m0 (X ) (3 L)

i=1 geAt weA;; 'up L
o generates f;

=m0 ( X p) (X p)

=1 o€t weA;;
o generates f;

=up(g; (0, 1))) D> p

wEA;
w generates g,

so that Q,(A0)T(n) = Qp(Ay). O

3. ITERATED FUNCTION SYSTEMS SATISFYING THE WEAK
SEPARATION CONDITION

We now focus our attention on self-similar measures associated with IFSs sat-
isfying the weak separation condition. We give a definition which is slightly
different than the original [ ], but is known to be equivalent when K is not a
singleton [ ]. Given a Borel set £ C K and t > 0, we define

M(E)={o €A :S,(K)NE #£ o)
S(E) ={S, : 0 € A(E)}

Let U(z,t) denote the open ball about = with radius t.
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Definition 3.1. We say that the IFS {5, },c7 satisfies the weak separation condition if

(3.1) sup #S;(U(z,t)) < oo.

z€R,t>0

We can obtain an equivalent formulation of the weak separation condition in terms
of a variant of the neighbour set which we call the covering neighbour set. Given a
net interval A € F;, we write V¢(A) = {Tx' 0 S, : 0 € Ay, S,([0,1]) D A}. We refer
to elements of V°(A) as covering neighbours. Notably, we omit the requirement that
a neighbour f € V¢(A) has f(K) N (0,1) # @.

Remark 3.2. We always have V(A) C V¢(A) with strict inequality possible. More-
over, we note that if A and A’ are any net intervals with V¢(A) = V°(A’), then
necessarily V(A) = V(A') following similar arguments to Lemma 2.3 and Theo-
rem 2.8. Note that the covering neighbour set is taken as the definition of neighbour
setin [ ].

We have the following characterization, which is [ , Proposition 4.3]:
Proposition 3.3 ([ D. The IFS {S,}icz satisfies the weak separation condition if
and only if

sup #V(A) < 0.

AcF

Net intervals for which #V¢(A) attain the supremum in Proposition 3.3 will play
an important role in our analysis in this section.

3.1. The essential class of the transition graph. Let {S;}.;cz be an IFS with associ-
ated transition graph G. Recall that in a directed graph G, an induced subgraph
G’ is a subgraph for which there exists some set of vertices H C V(G) such that G’
has vertex set H and edge set composed of every outgoing edge from a vertex in
H which connects to another vertex in H.

Definition 3.4. An essential class of G is an induced subgraph G’ of G such that
(i) for any v,v" € ', there exists a path from v to v/, and
(ii) if v € Gand v’ € G’ and there is a path from v’ to v, then v € G'.

In a finite graph, there is always at least one essential class [ , Lemma 1.1]. In
an infinite graph, there need not be an essential class; moreover, the essential class,
if it exists, need not be finite. When G has exactly one essential class, we denote it
by Gess-

We have the following basic observation. The proof of this result is similar to
the idea in [ , Lemma 4.2], but we reiterate the aspects of the proof that we
need here for clarity.

Proposition 3.5. Let {S;}icz be an IFS satisfying the weak separation condition. Then
its transition graph G has a unique essential class.

Proof. It suffices to show that there exists some vertex v such that if w is any
other vertex, there exists an admissible path from w to v. Then the essential class
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is the set of all vertices v’ for which there is a path from v to v". By Proposition 3.3,
there exists some ¢ > 0 and net interval A, € F; such that #V°(4) is maximal; let
v = V(Ay).

Now, let w € V(G) be arbitrary and A € F such that V(A) = w. Since
A° N K # @, there exists some ¢ € Z* such that S,(K) C A and r, > 0. Set
v=r,-tandlet A; == S,(Ap)

Let Ay = [a, b] have covering neighbours generated by words {wy, . .., w,, } with
w; € A;. By definition of v, {owy, ..., ow,,} are words of generation A,. Note that
(A1)°N K # @ and that the endpoints of A, are of the form S,.(z) where z € {0, 1}
and ¢ € A, so that o¢ € A,. In particular, if A, ¢ F,, then there exists some 7 € A,
such that S; ¢ {Sow,,- - Sow, } and S-([0,1]) D A;. But then there exists some
Ay € F, with Ay C Ay N S,([0,1]), where A, has distinct covering neighbours
generated by {w, ...,wy,} U {7}, contradicting the maximality of #V°(A).

Thus A, is in fact a net interval of generation y. Moreover, since 7, > 0, we
have Tph, = S, 0 Ta,, so that

V(A = {TA_ll 0 Sou; Jim1 = {TA_Ol o Sa_l 0 Sy 0 Sy, bity = V(Ao).

Thus by Remark 3.2, we have V(A;) = v and A; C A, so that there exists a path
from V(A) to V(A,), as claimed. O

Definition 3.6. We say that a point « € K is an essential point if for some symbolic
representation (e;)22, of x, there exists some N € N so that forall k > N, ¢; €
E(Gess).- We say that a point « € K is an interior essential point if every symbolic
representation has this property. We denote the set of all interior essential points
by K.ss. We say a net interval A € F is an essential net interval if V(A) € V(Gess)-

If A is an essential net interval, then A°N K C K. Of course, a given path (e;)32,
is eventually in the essential class if and only if a single edge is in the essential
class. One may verify that the set of interior essential points is the topological
interior of the set of essential points; in particular, the essential points form an
open set in K. Interior essential points play an important role in the multifractal
analysis of self-similar measures under the weak separation condition.

In the next proposition, we observe that interior essential points are abundant.

Proposition 3.7. Let {S;},cz be an IFS satisfying the weak separation condition. Let
Uz, to) be any open ball which attains the maximal value in (3.1). Then the following
hold:
(i) If o € I* is arbitrary, then S,(U(zo, to)) also attains the maximal value in (3.1).
(ii) U(xo,to) N K is contained in a finite union of essential net intervals. In particular,
U(l‘o, to) N K Q Kess'

Proof. To see that S, (U(zo, 1)) also attains the maximal value in (3.1), if

Sto(U(mov to)) = {S¢>17 ceey S(bm},

then S,4, € Spr. 110 (S0 (U(x0,10))) for each i and #S;,_ 11, (S+(U (20, t0))) > m. Then
equality holds by maximality of m.
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We now see (ii). By definition of net intervals, we know that for any ¢t > 0,
U(xzo,to) N K is contained in a finite union of net intervals of generation ¢. In
particular, it suffices to show that there is some ¢; > 0 such the set

{Aeftl AmU<$0,t0)7é®}

is composed only of essential net intervals. Let A, be a fixed essential net interval
and let oy € Z* have r,, > 0 and S,,([0, 1]) € A,. As argued above, S, (U (o, %))
also attains the maximal value in (3.1). Let

H = {SU 0 € Araotm SU(K) N SO’()(U(xmto)) = @}

Since S,,(U(xo, 1)) is open, there exists some ¢, > 0 such that for any ¢ with
le] < €0, Soy (U(xo + €,tp)) also attains the maximal value in (3.1). In particular, if
S, € H is arbitrary, we in fact have S, (K) N S, (B(xo,tp)) = @. Since H is a finite
set, take

t1 = min{min{dist(f(K), Ss, (B(xo,t0))) : f € H},to} > 0.

It remains to show that such a t; works.
Write S, (U(zo, to)) = {54, - - -, 54, } and set

F:{AE.Ftl AmU(l'(),to)%g}

Suppose for contradiction there is some A € F' that is not an essential net interval,
and let A have neighbours generated by distinct functions {S,,,, ..., S,,} with
w; € Ay,. As argued in Proposition 3.5, since A, = S, (A) is not a net interval
with neighbour set V(A) (or A; would be a descendant of A, and hence essential),
there exists some 7 € A,, , such that S (K) N A} # & and S, # S, for each
1 < i < k. We also observe that

(3.2) {Soowis -« s Soown t = {Sope 1 € € Apy, Sope(K) NAT] # T}

Since t; < ty, let 1 < 7 be the unique prefix in Ay, to- Suppose for contradiction
S (K)N Sy (U(xo, to)) # 2. Since S,, (U(zo, to)) attains the maximal value in (3.1),
we have S, = 5, 0 S, for some S, € S, +,(5-(U(zo,%))). Thus there exists
some word ¢ such that . = S, o S¢, which contradicts (3.2). We thus have that
S (K)N Sy (U(xg,tp)) = @ sothat S, € H.

But by definition of A;, we have that A;N.S,, (U(xo, %)) # @ and A;NS;, (K) #
&, so

diSt(Sq—1 (K), SO—O(U([EQ7 to))) < dlam(A1> < tq,
contradicting the choice of ¢;. Thus every A € F'is in fact essential, as claimed. ]
Remark 3.8. In fact, the same proof shows that if U(zo, ty) attains the maximal

value in (3.1), A C U(wo, tp) is any net interval, and r, > 0, then S,(A) is a net
interval with V(A) = V(S,(A)). In particular, A must be an essential net interval.
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Remark 3.9. In §5.3.3, we show that the converse of (ii) need not hold: there exists
some IFS {S;}.cz satisfying the weak separation condition and an essential net
interval A such that A N K is not contained a finite union of balls U(zy, t). In the
same example, we show that if 11 is the union of all balls U(x, ty) which attain
the maximal value in (3.1), then W N K C K.

3.2. An important measure approximation lemma. The following technical
lemma is a key approximation property for measures satisfying the weak separa-
tion condition, and the main factor behind the regularity of the measure on the
essential class. Note the similarity of the result to the weak separation “counting”
results; see, for example, Feng and Lau [ , Proposition 4.1].

Lemma 3.10. Suppose the IFS {S;}icz satisfies the weak separation condition, and let
v € V(Gess) be fixed. Then there exist constants c, C' > 0 (depending on v) such that for
any ball B(x,t) with pu,(B(x,t)) > 0, there exists t > s > ct and A € F, such that
A C B(z,2t), V(A) = v, and Qp(A); > C - pip(B(z,t)) foreach 1 < j < #uv.

Proof. Since yi,(B(z,t)) > 0 and p, is non-atomic, U(x,t) N K # @. From the
weak separation condition, there exists some ¢ € N such that #S;(B(z,t)) < ¢ for
any v € Rand ¢ > 0. By the invariant property of 1, and since 1, is a probability
measure, we have

NP(B(I7t)) = Z pmuposc:l((B(xat))) < Z Po

c€N(B(z,t)) o€t (B(x,t))

-y Y o

Sw€ESL(B(z,t)) c€A(B(z,t))

o=Pw

In particular, since #S;(B(z,t)) < ¢, get wy such that

(3.3) > e = pp(Bla,t))/L
c€N¢(B(z,t))

o =RPwq

Note that S,,,(K) N B(z,t) # &, so that S, ([0, 1]) € B(x,2t). If r,, <0, getk € T
with r, < 0 and set w; = wpk; otherwise, take w; = wy. Now, let A € F;, be such
that #V°(Ay) is maximal. Exactly as argued in Proposition 3.5, A; = S, (A¢) is a
net interval in generation r,, - so with V(A;) = V(A(). Moreover, we know that if
o generates some neighbour f of A, then w,0 generates the same neighbour f of
A;. Fixsome 1 < j < #V(A;) and let f; be the neighbour of A; corresponding to
the index j. We then have by using (3.3) and the above observation that

(@p(A)); = p(fi(O0. 1)) D> po

UGASOTwl
o generates f;

o D0 ) uUTHODD Y pe

c€A(B(z,t)) g€,
So=5uw, o generates f;
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> (Bl 1)) - PR ENi s ()
where C) = pj, - min;(Qp(Ay));/¢, which depends only on the IFS and choice of
probabilities.

Now let 7 be any fixed path from V(4A,) to v and let € be the smallest strictly
positive entry of T'(n). Let A be the unique net interval with symbolic yn where
7 is the symbolic representation of A,. Since 7'(7) is non-negative and Q,(A) =
Qp(A1)T'(n) is a positive vector, we have that (Q,(A)); > pp(B(x,t))-Cy -e. Taking
C = Ci¢, we see that C satisfies the requirements. Moreover, since A, € Froysor
taking ¢ = soL(n) - 7, and noting that ¢ - r,;, < |r,,| < ¢, we have that A € F;
where s > ct. Finally, A C Ay € S,,,(]0,1]) € B(z, 2t) as required. O

3.3. Measure properties of the essential class. As our first consequence of this
lemma, we establish that the interior essential points form a large subset of K.

Theorem 3.11. Let {S;}icz be an IFS satisfying the weak separation condition with
attractor K and let v € V(Gess) be arbitrary. Let

E= ] AnK.
AEF
V(A)=v
Then if , is any associated self-similar measure, p,(K \ E) = 0. In particular, pu,,(K \
Kess) = 0.

Proof. By Lemma 3.10, there exist constants ¢, C' > 0 such that for any ¢ > 0
and ball B(z,t) with u,(B(z,t)) > 0, there exists some net interval A € F with
A C B(z,2t), V(A) = v, and pp(A) > Cup(B(z,r)). We will construct a nested
family of sets £y O E; D --- such that each E, is a finite union of intervals,
pp(En) < (1—C/3)",and K \ E C ()~ E,. From this, the result clearly follows.

First consider the ball B; = B(0,1). Get A; C B(0,2) with V(A;) = v, set
E; =10,1] \ A; so that pup(Ey) <1—C < 1— (/3. Since A, is an interval, £} is
a finite union of intervals and clearly K \ £ C FE;. Inductively, suppose E,, is a
finite union of intervals with 1,(E,,) < (1 — A)". Since each £, is a finite union of
intervals, there is a family of balls { B(x;, t;)}/", such that the balls only overlap
pairwise on endpoints, E,, = |J;-, B(z;,1;), and for any distinct 4y, i, i,

(34) B(xiu Qtil) N B(xi27 2ti2) N B(xim 2tzs)

is either a singleton or the empty set and hence has measure 0, as p, has no
atoms. Now for each 1 < ¢ < m, apply Lemma 3.10 to get A, C B(x;, 2t;) with
pp(AL) > Cuy(B(xi,t;)). While the Al need not be dls]omt by (3.4), there exists a
sub-collection labelled without loss of generality {A? }, such that

Zﬂp (A7) Zﬂp (A7)

and A!, N AJ is at most a singleton for i # j. (To do this, pick the interval A/,
with the largest measure and remove any net intervals A/, where A/, N A!, isnot a
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singleton. By (3.4) and the geometry in R, there are at most 2 such indices j. Then
repeat until the set is exhausted.)
Set B, = B, \ ", Ai. Each Al is an interval with V(A!) = v, so that E,,,
is a finite union of intervals with K \ £ C F,,;, and
m’ A C m
fp(Eni1) = pp(En) — Z:U“P(A31> < pp(En) — 3 Z,up(B(xi,t))

i=1 =1

< (1-C/3)up(Ey) < (1 —-C/3)"H
as claimed. ]

Remark 3.12. It can also be shown, using similar techniques, that if s = dimy X,
then H°(K \ K.s) = 0 where #° is the s-dimensional Hausdorff measure. This
follows from Ahlfors regularity of self-similar sets under the weak separation
condition [ , Theorem 2.1] along with Lemma 2.3, in place of Lemma 3.10.

3.4. Local dimensions and periodic points. The notion of a periodic point was
introduced by Hare, Hare and Matthews for IFS of the form {z — rz + d; }ier
with 0 < r < 1 satisfying the finite type condition [ ]. In this section, we
take advantage of the general matrix product formula, Theorem 2.12, to establish
symbolic formulas for the local dimensions at certain points which we call periodic.

Definition 3.13. Given a Borel probability measure p, by the lower local dimension
of ;1 at x € supp u, we mean the number

1 B(z,t
dim, .p(z) = liminf M.
10 logt

The upper local dimension is defined analogously; when the upper and lower local
dimensions coincide, we call the shared value the local dimension of i at 2, denoted
by dimy,. p(z).

Definition 3.14. A periodic point is a point x € K where every symbolic represen-
tation of z is of the form

[x] = (e1,...,€,,0,0,...)

where n is minimal and 0 = (04, ...,6,,) is a cycle of G with minimal length. In
this case, we call 6 a period of the symbolic representation.

Intuitively, periodic points are the natural analogue of the rational numbers; for
example, with respect to the IFS {z — z/2, z — x/2 + 1/2}, the periodic points of
this IFS are precisely the rational numbers in [0, 1]. Under the weak separation
condition, it is straightforward to see that the periodic points form a countable
dense subset of K: if z,y € K have symbolic representations of the form 7, and
12, then both x and y are in the net interval with symbolic representation .

The proofs of Lemma 3.15 and Proposition 3.16 are motivated by the proofs
[ , Theorem 2.6 and Proposition 2.7].
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Fix some = € K. Enumerate {h; : j = 1,...,n} = {5,(0),5,(1) : 0 € A;} with
hy <--- < h,. If x # h; for each 1 < j < n, then there is a unique net interval
A¢(z) = [hi, hit1] of generation ¢ containing x. We then say A; (z) is the empty set
ifi=1or (hi_1,h;)NK = @,and A; (z) = [hi_1, h;] otherwise, and we define A/
similarly. Then set

My(z) = A; (z) U Ay(x) UAS (2).

Otherwise, © = h,, for some m, and we write A}(z) = [hy_1, b if m # 1 and
(hm—1, hm) N K is non-empty, and similarly for A?(z), and set

Mi(z) = Ay (z) U A ().
We have the following basic estimation:

Lemma 3.15. Let {S;};cz bean IFS as in (2.1) and let x € K be such that sup{ Rpax(A) :
r e AA e F} <oo. Then if puy, is any associated self-similar measure,

: e og pp(My(x))
dimyee pp(x) = %1_{% T

provided the limit on the right exists. Similar statements hold with respect to the limit
supremum and limit infimum for the upper and lower local dimensions respectively.

Proof. Suppose the local dimension exists and equals D. Recall thatif A € F,,
then t > tg(A) = Ruyax(A)diam(A). Thus there exists some constant 0 < e such
that forany ¢ > 0 and A € F, withz € A, et < diam(A). Moreover, diam(A) <t
always holds by the net interval construction.

If x is a boundary point, get s such that x is an endpoint of A(x) and

B(z,es) C Al(z) U A2(z) C B(w,2s)
where the notation is as above. Otherwise if = is not a boundary point, then
B(x,es) C AL (z) UAy(x) UAS(z) C B(z,2s)

In either case, B(z,es) C M,(x) C B(z,2s) so that

loge+logs\ (logu,(B(z,e€s))
log s loges

_ logp(Mi(x) _ (10g5+10g2> <log,up(B(x,28)))'

- log s log s log 2s

The limit of the left and right both exist and are equal to D; hence, the limit of the
middle expression exists and equals D. The arguments for the upper and lower
dimension follow similarly. O

In the following proposition, recall that for a path 6, L(6) is the length of the path
defined in Definition 2.9.
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Proposition 3.16. Let {S;},cz be any IFS and suppose x is a periodic point with period

0 = (eq,...,es). Then the local dimension of u at x exists and is given by
. _ logsp(7'(6))
dimyoe pi(w) = log L(0)

where if x is a boundary point of a net interval with two different symbolic representations
given by periods 0 and ¢, then 6 is chosen to satisfy

logsp(T'(0)) _ logsp(T'(¢))
log L(#) = log L(¢)

Proof. First, suppose z is a periodic point with two distinct symbolic represen-
tations with periods 6 = (6,,...,0;) and ¢ = (¢1, ..., ¢w), so that x is an endpoint
of some net interval A € F. We first note that

1p(Af () = HT(el, coye, 0,000,604, ... ,Qt)”
——

pp(A7 (x)) = ||T(e), ... € by b b1, bur)
N——

/

m

for t sufficiently small, t < ¢, and t' < {'. Now, get constants ¢; which do not
depend on ¢ such that

H(T(@))m-"lH S HT(87 s 787017 s 7@5)” ' HT(et-‘rl?‘ s 79€)H
———
(35) S CIHT(ely s 7€j707 s 70791a R 7€t)H S C2 ||T(9>m|| :
———

m

Moreover, since
L(el, < 7€j>L((9) L(@l, oo ,Ht)rmin <t< L(el, ‘o ,6j)L(9) L(@l, <o ,Qt),

we have L(#)™ =< t with constants of comparability not depending on ¢. Thus,
there exist k; not depending on ¢ so that

log ky [ ()™ |V log (A () _ log ks [ (T(6))" "™
log ks - L(0) - logt - log ky - L(0)

and taking the limit as ¢ goes to 0 yields

i 108 p(Ai (7)) _ logsp(T(0))
im =
t—0 logt log L(#)

In the exact same way, we get

i 108 #p(A7(2)) _ logsp(T'(9))
=0 logt ~ log L(¢)
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Now, since z is a periodic point, the set {V(A) : € A, A € F} is finite. Since
Riax(A) depends only on V(A), sup{Rmax(A) : z € A,A € F} < oo and the
assumptions for Lemma 3.15 hold. Then by the power mean inequality, we have

. e log (A () + pp(AZ(2))
dimyoe pip () = 11—{% log ¢

— min (lim log 11, (A} (2)) lim log MP(A%<x>)>

t—0 logt "0 logt

= min hmlogSpT(G) i 2252 T(0)
- =0 log L(f) 't>0 log L(¢)

since the final two limits in the maximum exist, as claimed.

If z is an endpoint of some net interval but has only one symbolic representa-
tion, then either A} (z) or A?(z) is empty for sufficiently small ¢ and the argument
is identical, but easier.

Finally, suppose z is not an endpoint of any net interval, and thus has unique
symbolic representation [z] = (ey,...,e;,0,0,...) where § = (6,...,0,). In this
situation, A; has symbolic representation (ey, ..., e;,0") and A, has symbolic rep-
resentation (e, ..., e;, 0" for any n € N, we have Ay C AJ. Thus for any ¢
sufficiently small, there exists some m € N, such that A; C Ay(z) C M(z) € Ay
where A has symbolic representation (ey, ..., e;,6™) and A, has symbolic repre-
sentation (ey, ..., e;,0™?). Similarly as argued in (3.5), there exist constants ¢y, ¢,
such that [|T(0)™*?|| < cipu(Ai(z)) < 2 [|T(0)™||. In addition, since M;(z) C A,
we have u(M;(z)) < u(A;) and there exist constants ¢/, ¢, such that ||T()™2|| <
u(My(2) < ¢ [T(O)"].

The argument proceeds identically as before. O

4. MULTIFRACTAL FORMALISM UNDER THE WEAK SEPARATION
CONDITION

In this section, we prove the multifractal formalism results under the weak separa-
tion condition.

4.1. Density of local dimensions at periodic points. We first show that under
the weak separation condition periodic points are abundant, in that the set of local
dimensions at periodic points is dense in the set of local dimensions in the essential
class. This generalizes a result of Hare, Hare and Ng on local dimensions [ ,
Corollary 3.15] for IFSs satisfying substantially stricter conditions. This property
can be useful in computing the exact set of possible local dimensions; see, for
example, §5.3.2 or the discussions of examples in [ ; ; ].

Theorem 4.1. Let {S;};ez be an IFS satisfying the weak separation condition and y,, an
associated self-similar measure. Then the set of local dimensions at periodic points is dense
in {dimyc(z) : © € Ko} and {dim, () : v € Kess}-

Proof. Let x be an interior essential point. Either there exists some s, such
that there is a unique essential net interval A, € F;, containing z, or there exists
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essential net intervals A}, A2 such that {x} = A} N A}. The cases are similar, but
the latter is slightly harder, so we treat that here.

Let ty > 0 be such that B(xz,2ty) C Aj U Aj. Arguing similarly to Lemma 3.10,
there exists constants ¢, C' > 0 such that for any 0 < ¢ < ¢, there exists A} C A? C
B(z,2t) and for each k = 1,2, we have A € F, wheret > s > ct,

min{Qp(A)); : 1 < j < #V(AN)} > Cup(B(x,1)),

and V(AF) = V(A}). We may also assume that A} and A? do not contain = as
an endpoint. In particular, for each 0 < t < ¢,, there exists some k£ € {1,2}
such that AF C (AF)°. Set A, = AF and let 7, be the path in the transition graph
corresponding to A} C Af, which is a cycle since the two net intervals have
the same neighbour set. Let v, be the symbolic representation of A} and ~, the
symbolic representation of ~;

For each 0 < t < ty, let x; be any periodic point with period r,. We note that
since x, is not the boundary point of any net interval, we have by Proposition 3.16

logsp T'(1;)
log L(m:)

Fix t as above, and let Ay € {A}, A%} be such that xy € AJ. Let Ay have
symbolic representation 7. By definition of ¢, we observe that ¢ > tg(A;) > crpint.
Since tg(A;) = L(v)L(n:), there exist constants ¢;, co > 0 (not depending on t) such
that

dimyec Mp(xt) =

12t < L(n) < cot.

We also bound sp T'(n;). Since A; C B(x, 2t) has symbolic representation 7,
we have | T(yn:)|| < pp(B(z,2t)) and since 7'(7y) is a transition matrix, there exists
some C] > 0 such that

spT'(ne) < [[T(m)|| < Crpp(B(x, 2t))

(just take C to be the smallest strictly positive entry of 7'(y;) and 7'(72)). On the
other hand, since Q,(A;) = Qp(Ao)T (1),

min{Qp(A,); : 1 < j < #v}
max{Qp(Ao); : 1 < j < #v}

> Cup(B(,1))

T max{Qp(Ak);: 1< j<H#v,1<k<2}
= Copp(B(,1)).

spT(n:) >

To summarize, we have shown that

log € + log p1p(B(z, t))
log ¢ + logt

log sp T'(n:)
log L(n:)

< log Cy + log pip(B(z, 2t))

- log ¢ + log 2t '

> dimy,e ,U/p(xt) =
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Leta = di_mlocup(x) and let e > 0 be arbitrary. Get some t; > 0 such that for all
0<t<ty,

log Cy + log 1 (B(2,1))

<
log co + logt Sate
and then choose 0 < ¢ < min{ty, t; } such that
log Cy +log pip(B(2, 2t))

log ¢1 + log 2t -

Since € > 0 was arbitrary, it follows that the set of local dimensions at periodic
points is dense in {dimy,.(z) : ©+ € Ke}. The result for lower local dimensions
holds identically. O

4.2. The Li-spectrum, dimension spectrum, and multifractal formalism. In this
section, we show how to extend a result of Feng and Lau [ ] to hold with
respect to a larger, more natural class of intervals.

Let 1« be a compactly supported finite Borel measure and let V' C R be any open
set with p(V') > 0. Then the L%-spectrum of pnon V, denoted by 7y (1, q), is given by

logsup ), u(B(mi, t))q
logt

7v (4, g) = lim inf

where the supremum is over families of disjoint closed balls {B(z;,t)}; with
z; € supp pand B(z;,t) C V. A direct application of Holder’s inequality shows
that 7 (¢q) is a concave function. When V' = R, we write 7(u, ¢) = mr (1, q)-

Since 7y (11, q) is a concave function in g, its concave conjugate is given by

v (1, ) = inf{ag — 1v(q) : ¢ € R}.
We set
Dy (u) = {o € R : dimyo. () = o for somez € K NV}

and
Ky(p,a) ={x € KNV :dimp p(z) = a}.

Understanding the geometric properties of the sets Ky (u, ) is a natural way to
understand the structure of .

A heuristic relationship between the values if dimy Ky (1, ) and the concave
conjugate of LI-spectrum, known as the multifractal formalism, has been studied
by many authors (see, for example, [ ; ; ; ; ; ;

7 7 4 ; ])'

Definition 4.2. Let . be a compactly supported finite Borel measure and let V C R
have (V) > 0. We say that the measure y satisfies the complete multifractal
formalism with respect to V' if
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(i) Dy (1) = [@min, @max] Where

P
Qin = lim 4 (q>
g—+oo ¢ g——o© (g

(i) For any a € [aumin, Omax), Ty (@) = dimpg Ky (o).

Note that we do not comment on differentiability of 7/ (q).

4.3. Weak regularity and restricting the Li-spectrum. We now begin the setup
for the statement and proof of Theorem 1.2. In the statement, we are restricting
our measure /i, to a set K N E where E is a finite union of closed intervals. In the
interior of F, this does not cause any problems: in general, if V' is any open set,
then 7y (11p, ¢) > 7(1p, q). However, the measure of balls centred at the endpoint
of a closed interval could be substantially smaller.

For example, suppose /i, is the uniform Cantor measure (corresponding to the
IFS Si(z) = z/3 and S»(z) = ©/3 + 2/3 with probabilities p; = p, = 1/2) and z is
the point with symbolic representation consisting of increasingly long alternating
stretches of 1s and 2s. Then, the one-sided upper local dimensions of |0, at « is
not equal to the everywhere constant value of the local dimension of .

In this section, we introduce the notion of weak regularity, which ensures that
this situation does not happen. We also prove some results which show that this
hypothesis is not too challenging to satisfy in general.

We recall that E is Ahlfors reqular if there is some s > 0 and a, b > 0 such that

at’* < H*(E N B(z,t)) < bt’

for all z € E and ¢ sufficiently small. If K is the attractor of an IFS satisfying the
weak separation condition, then K is always Ahlfors regular (see, for example,

[ D

Definition 4.3. We say that a set E is weakly reqular if there is some € > 0 such that
for all ¢ > 0 sufficiently small,

EnN (B(z,t)\ B(z,et)) # @

forallz € E.

We begin with the following useful observation.

Lemma 4.4. Suppose K is Ahlfors reqular and E C K is compact. Then E is weakly
regular if and only if the boundary of E (in the topology relative to K) is weakly regular.

Proof. The forward direction is immediate. Conversely, let 0 < ¢y < 1 be the
constant from weak regularity of the boundary of E. Suppose z is in the interior of

E relative to K and let¢ > 0. If B(x,teq/4) N K = B(x,tep/4) N E, then for € < ¢y/4,

H*(E N B(z,te/4) \ B(x, et)) > (a(en/4)* — €b)t* > 0
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for some € > 0 depending only on a, b, s, and €. Thus £ N B(z,t) \ B(x,et) # @
Otherwise, there is some y € B(z, tep/4) in the boundary of E so that

@ # ENB(y,t/2)\ B(y,teg/2) C EN B(x,t)\ B(z,teg/4).

as required. O

The main point behind weak regularity is the following lemma.

Lemma 4.5. Let 1 be a Borel probability measure with compact support K, and let V be
an open set with (V') > 0. Suppose E C V' is a finite union of closed intervals such that
E N K is weakly reqular. Then 1y (1, q) < 7(p|g, q).

Proof. This follows directly for ¢ > 0 since for all ¢ sufficiently small, B(z,t) C
Vforanyz € ENK.

Otherwise, let ¢ < 0 and let ¢ be sufficiently small such that each interval in
E has length at least 2t and B(z,t) C V for any z € EN K. Let {B(x;,t)}; be
an arbitrary centred packing of £ N K. By weak regularity, there is some ¢ > 0
such that for each i, there is some y; € F N K such that B(y;, et) C B(x;,t) N E.
Therefore,

ZME(B(%J))‘]SZME( (yi, €t))* ZM (yi, €t))?

But {B(x;,t)}; was arbitrary, so the desired result follows. O

We now show that intervals J with J N K weakly regular are abundant. Recall
that F(® denotes the (closed) -neighbourhood of a set F.

Lemma 4.6. Let {S;};cz be an IFS satisfying the weak separation condition with attractor
K and let § > 0. Then zf F C K. is any compact subset, there is a finite union of essential
net intervals E = Ay U---UA, suchthat F C E C F® and E N K is weakly reqular.

Proof. For eacht > 0 set

Ht — {A € -Ft . V(A) c V(Qess)}
and let
v=(Ua)
AeH;

It follows directly from the definition that K. = (J,.,U:;. We may assume §
is sufficiently small so that F®) C K. Since F(® is compact, get t, such that
FO c Uy, lett, = min{ty,§/2}, and set

E={AceHy :ANF # 2},

EOIUA

Aeg
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Note that F' C Ey C F®/? since diam(A) < ¢, for any A € F;,. Now for each A €
£,get0 <t <t and 0,7 € A; such thatr,,r, > 0and A C [S,(0),5,(1)] € AG/2),
Finally, set

En={A" e F,: A" C[S,(0),5,(1)]}.
Observe that

Kn |J A'=Kn[S,(0),8-(1)] c F¥
A’€EA

is weakly regular by Lemma 4.4. Moreover, since FO) ¢ U, each A" € &, is
essential. Thus since a union of weakly regular sets is again weakly regular,

E=J U A

Al AN'eép

satisfies the requirements. O

We conclude this section with the following observation.

Lemma 4.7. Let {S;}icr be any equicontractive IFS satisfying the weak separation condi-
tion. If E is any finite union of net intervals such that E'N K contains no isolated points,
then E is weakly reqular.

Proof. Write S;(z) = rx + d; where 0 < r < 1. It suffices to prove that [0, z] N K
and [z, 1] N K are weakly regular for any = S,(z) where o € Z* and z € {0, 1},
where z is not an isolated point of [0, z] N K or [z, 1] N K. We will prove the case
[0, S,(0)] N K; the remaining cases are either analogous or easier.

Suppose for contradiction [0, S,(0)] is not weakly regular and get indices
(kn)o2; and a sequence (¢,)2° ; converging monotonically to zero such that

[S5(0) — 1™, S,(0) — €™ N K = @

for each n € N. Since S,,(0) is an accumulation point from the right, there is some
7. € I% such that S, ([0, 1]) 2 [S,(0) — 4, S5(0)] for some § > 0 sufficiently small.
But S, ({0,1}) N [S,(0) — r*» S, (0) — €,7*) = &, which forces

1S, (0) = S, (0)] < enrte.

where 7, € ZF" is the word with o as a prefix and S,,, (0) = S, (0). This contradicts
the weak separation condition by [ , Theorem 1]. O

Remark 4.8. In the general case, the same argument gives that x — Az for some
A # 0is an accumulation point of {S, oS, : 0,7 € Z*} in the topology of pointwise
convergence. The equicontractive assumption gives that A = 1, but it is unclear
how to guarantee this in general.
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4.4. Multifractal formalism for the essential class. We now prove the multifrac-
tal formalism for the essential class. We begin with the following result, which is
contained in [ , Theorem 5.4]:

Proposition 4.9 ([ D. Let {S;}icz be an IFS satisfying the weak separation condition
and let p, be an associated self-similar measure. Let Uy be any open ball which attains the
maximal value in (3.1). Then p,, satisfies the complete multifractal formalism with respect
to Uo.

Using the notion of the essential class, we can obtain a strictly stronger extension
of this proposition. We first note the following straightforward lemma:

Lemma 4.10 ([ D. Let {S;}icz be an IFS satisfying the weak separation condition
and let ji,, be an associated self-similar measure. Let U, be any open ball which attains the
maximal value in (3.1). Then if o € I* is arbitrary,
(1) 75, (o) (Hps ) = Tuo(q),
(ii) Ds, (o) (1p) = Du, (11p), and
(ZZZ) dlmH KUO (,U,p, Oé) = dlIIlH KSU(U0)<:U’IJ7 Oé).

Proof. Statement (i) is [ , Corollary 5.6]. Statements (ii) and (iii) are implicit
in the usage of [ , Lemma 2.5]. O

We obtain the following extension of Proposition 4.9. In light of Proposition 3.7
and Lemma 4.6, our result is strictly stronger.

Theorem 4.11. Let {S;}icz be an IFS satisfying the weak separation condition and let
tip be a self-similar measure. Let Aq, ..., A, be any essential net intervals such that with
E=AU---UA,, EN K is weakly regular. Then with v = pi,|g,

(i) v satisfies the complete multifractal formalism,

(ii) the set

P(pp) = {dimyec pip(2) : v € Ko, © periodic}

is dense in D(v), and
(iii) the sets of local dimensions satisfy
D(v) = {dimyoc pip(x) : & € Kess, dimyoe pip () exists}
= {dimyopip(7) 1 @ € Kese} = {dimiocstp(2) : & € Koss}
Moreover, the values of T(v, q) do not depend on the choice of Ay, ..., A, and for ¢ > 0,
T(MP? Q) = T(V7 Q)
Proof. We split the proof into two parts for clarity.

Part 1. The statement (i) holds, the values of (v, q) do not depend on the choice of
Ay, ... Ay, and for ¢ >0, T(pp, q) = 7(v,q).

Let Uy be an open ball which attains the maximal value in (3.1).
To verify (i), by Proposition 4.9, it suffices to show that

0, (p, @) = T(v,q)  Duy(pp) = D(v)  dimy Ky, (pp, @) = dimy K (v, ).
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Let o be such that S,(Uy) C E, and we see directly from the definitions and
Lemma 4.10 that

TUy (MTM Q) = TSo(Uo)(:uPa Q) > T(V’ Q)
Dy, (pp) = Ds, wo)(p) € D(v)
dimy Ky, (ptp, o) = dimy Kg, ) (v, ) < dimy K (v, o).

We now establish the reverse inequalities.

That 7(up, 9) = v, (1p, @) = 7(v, q) for ¢ > 0 is straightforward; see, for exam-
ple, [ , Proposition 3.1].

Otherwise, fix ¢ < 0. Since Uy is open and the A; are essential, there exist
net intervals A}, ..., A such that V(A;) = V(A}) for each 1 < i < n and the
AY are pairwise disjoint. By Lemma 4.6, there exist compact intervals F; O A
such that the F; are weakly regular, pairwise disjoint, and have F; C U,. Set
E* = FyU---UF, and let v* := v|g-. Since E* is weakly regular, it follows that
v, (hp, @) < T(v*, q) by Lemma 4.5.

It remains to show that 7(v*, q¢) < 7(v, ¢) for ¢ < 0. By Lemma 2.3, get similari-
ties g, : A; N K — A7 N K and some ¢y, c2 > 0 such that if £ C A; is an arbitrary
Borel set,

(4.1) av”(6i(E)) < v(E) < cov™(gi(E))

Let each g; have contraction ratio p;.

Now let ¢ > 0 be sufficiently small so that 2¢ < min{diam(4;) : 1 <i <n} and
let ¢y > 0 be the constant from weak regularity of £'N K. Suppose { B(x;,t)}7., is
an arbitrary family of disjoint closed balls where z; € E N K. For each j, there is
some i(j) and y; such that

(this must hold for either y; = z; or y; € EN K N B(z;,t/2) \ B(xj,ten/2)).
Now set

pgzz—omin{pizlgign}.

For each 1 < j <m, by (4.2),
v(B(zj,t)) > v(B(yj, teo/4) > c1v™(B(gi)(Y5), picyteo/4))
> 1™ (B(gi)(y;), pot))

so that v(B(x;,t))? < c{v*(B(x], pot))? where x5 = gi(;)(y;). Observe also that the
B(x}, pot) are pairwise disjoint. But { B(x;,t)}7L, was an arbitrary cover, so that

logsup > v(B(x,1))" _ logci +logsup 3., v (B(a7, pot))*
logt - log py ' + log pot '

Taking limits, it follows that 7(v, ¢) > 7(v*, q) for ¢ < 0.



34 RUTAR

We now see that D(v) C Dy, (). First note that Dy, (1p) = [Qmins Omax] Where

T(”? q) lim Tuy (lupa Q)

Qmpin — llIIl AOmax — llm T(V’ (:Z) — llm TUO (Mp? q)

q——+00 q q—-+00 q q——00 q q——00 q ’

since 7(v, q) = Tu,(f4p, q). Let € supp v be arbitrary with a = dimy,. v(z). Then
forany ¢ € Rand t > 0, we have

log sup Z v(B(x;,t))? > logv(B(x,t))?

where the supremum is over disjoint balls B(z;, t) with z; € supp v, and therefore
7(v, q) < qo. Since 7(v, q) is concave, it follows that & € [oumin, Qmax] = D, (1p)-

Finally, we verify that dimy K (v, o) < dimy Ky, (p4p, ). First note by (4.1) that
if x € A? N K for some i, then g;(x) € (Af)°N K C U has

dimye v(x) = dimv*(g;(x)) = dimyoc pp(gi(x)).
Thus g;(K (v, a) N AY) C Ky, (p, o) and

dimpy <K(V, a)n O Af) < dimy Ky, (ptp, @).
i=1

Since D(v) = Dy,(pp) and E \ J;—, A is a finite set (and hence has Hausdorff
dimension 0), the result follows.

Thus the complete multifractal formalism holds.

Since U, was fixed, 7(v, ¢) does not depend on the choice of A4, ..., A,,.

Part I1. Statements (ii) and (iii) hold.

We now see that
4.3) D(v) = {dimjec pip(2) : & € Kegs, dimyoe pip () exists}.

If x € K., by Lemma 4.6, there is a weakly regular finite union of essential net
intervals F' such that x € (F'N K)° where we take the interior relative to K, and

dimyee pp () = dimyee pip|r(z) € D(v)

since D(v) = D(up|r) as proven above. Conversely, if « € D(v), then there exists
some y € Uy such that dim,. p1,(y) = a. But Uy C K by Proposition 3.7, so that
(4.3) follows.

By Theorem 4.1, we have that

P(pp) = {dimyee pip(x) : © € Ko, x periodic}

is dense in the set of upper and lower local dimensions in K.s. Now P(p,) € D(v)
from (4.3) and D(v) = [@min, Omax] 1S a closed set with D(v) C {di_rnlocup(m) tx €
Kess }. But again, Theorem 4.1 shows that P(1,) is a dense subset of {dimjocfip()
r € Ko}, forcing

D(v) = {dimjoefip(7) : ¥ € Kegs ).
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Of course, we also have D(v) = {dimy 11,(x) : © € Kes} by the same argument,
finishing the proof of the theorem. O

Corollary 4.12. Let {S;}icz be an IFS satisfying the weak separation condition with
associated self-similar measure ,. Then there exists a sequence of non-empty compact
sets (K)o, with K., C K41 C K for each m € N such that
(1) im0 pip(Kim) = 1,
(ii) each pi,, = up|K,, satisfies the complete multifractal formalism, and
(iii) 7T(tm, q) and D(p,,) do not depend on the index m.

Proof. Since i, is Borel and K. is a relatively open subset of K with 11, ( Kess) =
1 by Theorem 3.11, there exists a nested sequence of compact sets (F,,);°_; with
F,, C Ko such that lim,, ., u(F,,) = 1. Let K,, O F,, be a finite union of
essential net intervals given by Lemma 4.6. Then by Theorem 4.11, each ,, =
Up| Kk, satisfies the complete multifractal formalism and 7 (4., ¢) and D(p,,) do not
depend in the index m, as required. O]

In some situations, the above theorem can also be used to verify that the complete
multifractal formalism holds with respect to the invariant measure /ip,.

Corollary 4.13. Suppose {S;}icz is an IFS satisfying the weak separation condition with
transition graph G. Suppose there is a bound on the maximum length of a path with no
vertices in the essential class. Then if p, is any associated self-similar measure, ji,, satisfies
the complete multifractal formalism and the local dimensions at periodic points are dense
in the set of all local dimensions in K.

Proof. If M is the bound on the maximum length of a path, since L(e) > rp,
for any e € E(G), we have that any net interval in F,x is an essential net interval.

In particular, supp p,, is contained in a finite union of essential net intervals, which
is automatically weakly regular. Apply Theorem 4.11. O

Remark 4.14. For example, if the neighbour set V([0, 1]) = {z — x} is contained
in the essential class, then § = G, and the conditions for the Corollary 4.13 are
satisfied.

Corollary 4.15. Suppose {S;}icz is an IFS such that the associated transition graph G is
finite. Suppose that any cycle in G is contained in the essential class. Then if i, is any
associated self-similar measure, j1,, satisfies the complete multifractal formalism and the
local dimensions at periodic points are dense in the set of all local dimensions in K.

Proof. When @ is finite, the assumption in Corollary 4.13 is equivalent to the
assumption that any cycle is contained in the essential class. 0

5. THE FINITE NEIGHBOUR CONDITION AND EXAMPLES

5.1. The finite neighbour condition. Let {S;};cz be an IFS as in (2.1). The finite
neighbour condition was defined in [ ] in a way following naturally from
the finite type conditions studied in the literature [ ; I
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Definition 5.1. We say that {5, };cz satisfies the finite neighbour condition if there
are only finitely many neighbour sets. Equivalently, its transition graph G is finite.

Remark 5.2. The definition of a neighbour in Definition 2.1 differs slightly from
[ , Definition 2.7]. Namely, for a net interval A € Fand T € V(A),
we require T(K) N (0,1) # @ rather than 7'([0,1]) D [0,1]. However, using
[ , Corollary 3.4] with respect to the generation kg := 7in/M where M =
SUpacr Rmax(A) and the characterization [ , Theorem 3.4.], one can verify
that the finiteness assumptions are in fact equivalent.

It is shown in [ ] that the finite neighbour condition is equivalent to the
generalized finite type condition [ ] holding with respect to the invariant open
set (0,1). Moreover, under the assumption that the attractor KX is an interval, it is
proven in [ ; ] that the finite neighbour condition is in fact equivalent
to the weak separation condition. The author is not aware of any IFS of similarities
in R which satisfies the weak separation condition but not the finite neighbour
condition.

Of course, when an IFS satisfies the finite neighbour condition, it also satisfies
the weak separation condition (see, for example, [ , Theorem 1.1] or | ,
Theorem 3.7]) and thus has a unique finite essential class G.. Interestingly, the
converse also holds:

Theorem 5.3. The IFS {S;}icz satisfies the finite neighbour condition if and only if
G({S;}icz) has a finite essential class.

Proof. (=) Since the finite neighbour condition implies the weak separation
condition, this follows immediately from Proposition 3.5 since G is a finite graph.

(<=) We first define a construction on neighbour sets. Let v; = {f1,..., fs, }
and vy = {g1, ..., gs, } be a pair of neighbour sets. We denote by J(v;, v2) the set of
all subsets w = {hy, ..., h,,} such that there exist indices 7, j and 7" = f; o gj_l such
that

{TAOhh...,TAOhm}C{flw"affl}

where A = [min{0,7(0),7(1)}, max{1,7(0),7(1)}] and Ta(z) = rz + d with
r > 0 where Ta([0,1]) = A. Clearly there are only finitely many functions 7,
so that J(vy,v2) is a finite set. When F is a finite set, we denote by J(F) =
Uwy wper J (v1,02), which is also finite.

Now, by assumption, G has a finite essential class G so that Jy = J(V (Gess))
is finite. Let A, € F, be an arbitrary net interval; we will see that V(A,) € J, from
which it follows that {.S; };cz satisfies the finite neighbour condition.

First, let 0 be such that r, > 0 and S,([0,1]) is a finite union of essential
net intervals (just take o such that S, ([0, 1]) is contained in some essential net
interval; if r, < 0, append some i € 7 with r; < 0). Let V(A() have neighbours
generated by words {wy, . .., w;, } in A,; note that each ow; € A, _,. Let A; = 5, (4Ay)
and write A; = [a,b]. Then there exist essential net intervals A,, A, € F, .
such that A, = [a,q¢] and A, = [by,b]; perhaps A, = A,. Note that ow; has
Ay, Ay C Sou, ([0, 1]) since A,, Ay € Ay so that ow; generates a neighbour f, of A,
and f;, of A,.
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We see that V(A) is a join of (V(A,), V(Ay)). Set T = f, o f,'. We first note
that
® Ta, © fo="Spu =T, 0 fr,s0thatT = f,o0 fi' =Tx, oTx" and
e A= [min{0,7(0),7(1)}, max{1,7(0),T(1)}] = TA_al(Al) so that Ty = TA_GI o
Th,.
Now let h € V(A,) be arbitrary. Since r, > 0, Tp, = Sy 0Ta,. Thenif h = TEOI 0 S,
we have

Taoh=(Ty oTa,)o (T 08,08,)=Tx' o Suu,

where ow; generates a neighbour of A,, and thus Tx o h € V(4A,), as required. [

Remark 5.4. If v, w € V(Ges), then there are at most #v - #w distinct functions 7',
so that #.J (v, w) < #v - #w - 2%, Moreover, there are at most (#V (Ges))? pairs
(v,w). In particular, if there are m distinct neighbours in G, then #V (Ges) < 2™
and #v < m for any v € V(Gess), so that

#V(G) < (#V(Gess))? - m® - 27 < m?8™.

Thus the above proof gives a quantitative bound on the size of G as a function of
the number of distinct neighbours in Gess.

5.2. Approximate transition matrices. Under the finite neighbour condition, we
may approximate the transition matrix 7'(e) by the matrix 7*(e) given by 7% (e);; =
pp(fi1((0,1))

H‘p(gj_l((071))’
there exist constants ¢y, ¢, > 0 such that ¢;7*(n) < T(n) < ¢,T*(n) element-wise
for any admissible path . Moreover, since i, is a probability measure, direct
computation shows that || 7%(n)||, < pp(A). Applying Theorem 2.12, we have:

p¢ in the same context as (2.4). Since there are only finitely many values

Corollary 5.5. Let {S;}icz be an IFS satisfying the finite neighbour condition with
associated self-similar measure (i
® There exist constants ¢y, co > 0 such that for any path 1 realized by (A;)i-,

c1Qp(An) < T (1) Qp(A0) <X 2Qp(Ar)

where the inequalities hold pointwise.
* There exists a constant ¢ > 0 such that for any A € F with symbolic representation

n,

cpip(D) < Ty < pp(A),

One may also observe that the same principle works for periodic points. We have
the natural analogue of Proposition 3.16:

Corollary 5.6. Let {S;}icz be any IFS and suppose x is a periodic point with period
0 = (e1,...,es). Then the local dimension of p at x exists and is given by

. _ logsp(T*(9))
dimyee p() = T logL(8)



38 RUTAR

where if x is a boundary point of a net interval with two different symbolic representations
given by periods 0 and ¢, then 6 is chosen to satisfy

logsp(T()) _ logsp(T*(¢))
log L(0) — logL(¢)

Proof. The proof is identical to the proof of Proposition 3.16, noting that the
analogue of Corollary 5.5 holds since the set {V(A) : z € A, A € F}is finite. [

5.3. An overlapping IFS with non-commensurable contraction ratios. Consider
the IFS given by the maps

Si(z)=p-x So(z)=r-az+p(l—r) Sy(z)=r-x+1-r

where 0 < p,r < 1satisfy p+ 2r — pr <1,1i.e. Sp(1) < S3(0). This IFS was initially
studied by [ ] and was the first example of an iterated function system with
overlaps and satisfying the weak separation condition without commensurable
contraction ratios. It is known that the Hausdorff dimension of the attractor K is
the unique solution to the equation p° +2r* — (pr)® = 1 (see [ , Proposition 4.9]
or [ , Example 5.1]).

Under the assumption that p > r > p?, we will compute the neighbour sets
and the transition graph. We also give formulas to compute the range of local
dimensions. We will also show (for all valid parameters r, p) that any associated
self-similar measure satisfies the complete multifractal formalism.

5.3.1. Neighbour sets and the transition graph. We first compute the neighbour sets
and children in complete detail. The net interval A, = [0, 1] has V(A¢) = {z — =}
and tg(Ag) = 1 = m(4y) - 1 since 1 is the maximal contraction ratio of any of its
neighbours. Thus A has children

(Al - [O7p(1 - r)]>A2 - [p(l - T>7P]7A3 = [p,p-i— r—= pT],A4 = [1 -, T])

in F;. Note that when p + 2r — pr < 1, [p+ r — pr, 1 — r| is not a net interval since
its interior does not intersect K. One may compute

1
V(&) = {e = z/(1-1)} V(Ay) = {z s a/pasaf/r+ ——1}
V(Ag) = {z Lp +—L ) V(A = {z e a).
Since V(Ay4) = V(Ay), the children of A, are scaled versions of the children of A,

and have the same neighbour sets by Theorem 2.8.
* Since p > r, A; has tg(Ay) = m(A;) - (1/(1 — 7)) = p, so Ay has children

(A5 =10, 0*(1 = 71)], Ag = [p*(1 = 1), p*], Az = [p%, p(p + 1 — pr)])

where V(A;) = V(A1), V(Ag) = V(Ag), and V(A7) = V(A3).
* A has tg(As) = pand one child Ag = [p — pr, p] with V(Ag) = {z — =,z —
x/p}. Note that Ag = Ay, but V(Ag) # V(A,).
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FIGURE 1. Modified transition graph with edge lengths and transition
matrices

* Ajhas tg(Az) = r and two children (Ag = [p, p + 1% — pr?], Ao = [r — 1%, 7))

with V(Ag) = V(A3) and V(Alo) = V(Ao)

e Aghaschildren Ay = [p—pr, p—pr?], Ay = [p—pr?, pl with V(A1) = V(Ay)

and V(Aiz) = V(Ay).
Thus by Theorem 2.8, there are no new neighbour sets and the IFS satisfies the
tinite neighbour condition.

For simplicity, fix vg = V(Ay), v1 = V(A1), v = V(A3), v3 = V(A;) and
vy = V(Ag). Let p, be a self-similar measure associated with the IFS, where
p = (p1,p2,p3). Observing that v, has exactly one child, we can construct an
equivalent transition graph by removing v,, concatenating the incoming edges
with the outgoing edge, and multiplying the corresponding edge lengths and
transition matrices. This results in the modified transition graphs and edge lengths
described in Figure 1.

5.3.2. The attainable local dimensions. We see that the conditions for Corollary 4.13
are satisfied, so that the measure i, satisfies the complete multifractal formalism
and that the local dimensions at periodic points are dense in the set of upper and
lower local dimensions.

We now compute the range of local dimensions at periodic points. We first
make note of the following obvious inequality: if 0 < a,b,¢,d and loga/logb <
log ¢/ log d, then

loga _logac _logc
loghb — logbd — logd’

Now let 7 be any cycle contained in G. If n only passes through vy, since

(5.1)
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spT*(e};) = max{ps, ps}, the local dimension corresponding to the cycle (¢},) is
%. Otherwise, 7 passes through some vertex other than v,. Thus without
loss of generality,  begins and ends and some vertex v # v4. Suppose 7 visits some
vertex w # vy twice, i.e. ) = nym2n3 where 7, is a path from v to w, 1, is a cycle from
w to w, and 73 is a path from w to v. Then 7 can be written as a concatenation of
cycles 1, and 731, where T'(1);) and 1'(n3n;) are singletons, and by (5.1), we have

that

: {log spT'(n2) logspT(nzm) } < logspT(n)
log L(n2) "~ log L(nzm) log L(n)
< max{ logsp T'(n2) 7 log sp T'(n3m) }
log L(n5) log L(nsm )

In other words, the minimum and maximum local dimensions on cycles are
attained at cycles which do not repeat any vertex other than v4. Thus it suffices to
consider all such families of cycles.

If n does not pass through v4, the only non-repeating cycles are (e3), (e4),
(es), and (e2, e9). We thus see that the maximum and minimum possible local
dimensions are attained at the points in

_ {logpl log p logps}
logp’ logr’ logr’

Otherwise, 7 passes through v,. A straightforward induction argument shows
that

P 0y .
p1p3(ph—ph) pn> Lp2 7 D3

*( 0 \n p2—p3 2
T ()" = "

P 0
P2 =Dp3 =P

n n

np'pr p

Now, let
! / / / / /
Mn = (667 €9,€1,€11,-++,€11, 610) Mon = <€5a €11y 5611, 610)
— —

n n

denote the two possible families of cycles which go through v, and do not repeat a
vertex not in v4. We then have that

p1p2ps(py 2 —pit?) )
_SpT (77171) — p2—p3 ‘P2 7ép3
2 + n)Pn+2(1 21?)2 P2 =Dp3 =P

2+n "1 =2p)? ipe=ps=p

n+2 n+2
b, —spT 772n { p2 p3 I D2 # D3
P’
p

L(n )
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Let
nf log a,, log a,,
Gpin = M ——— <7 Qmax = SUP 77— ~7
n (n+4)logr o (n+4)logr
. log b, log b,,
binin = Inf bmax = Sup )
n (n+1)logr +logp n (n+1)logr+logp

Then the minimal local dimension is equal to

logpy logps logps
logp’ logr’ logr

s Amin, bmin}-

Qi '= min{
and the maximal local dimension is equal to

logp1 logpy logps
logp’ logr '’ logr

Omax = max{ s Umax; bmax}-
The parameters o, and amax can be determined exactly in many situations, but
generic solutions are tedious. Additional details are left to the reader.

5.3.3. The maximal open sets of the weak separation condition. Here we show, under
the same assumption p > r > p? that the essential net interval [0,1] N K is not
contained in a union of open balls U satisfying the maximal value in (3.1). In fact,
we show that for any e > 0, the open set (1 —¢, 1) N K is not contained a finite union
of such open balls. In addition, this shows that for any U(x,t) with #S,(U(z,1))
maximal, we must have 1 ¢ U(z,t), whereas 1 € K = K. A similar argument
gives this result for general parameters p and r, but the details are tedious and we
omit the proof.

We first note that sup,cp ;.0 #S:(U(z,t)) > 5. To see this, take ¢ = 1/4 and
Uy = U(1/4,1/4). Then for each o € {11, 12,13,22,23}, we have S,(K) N U, # &
(since S13 = 591, we exclude the word 21).

To show that (1 —€,1) N K is not contained in a finite union of maximal open
balls for each € > 0, since 1 is an accumulation point for K it suffices to show
that if ¢ > 0 and U(z,t) is any open ball such that z + ¢ = 1, #S,(U(z,t)) < 5.
A direct check shows that for ¢t > 1/4, #5,(U(x,t)) < 5. Otherwise, let m > 1
be such that 1/4™"! < ¢ < 1/4™. Since the rightmost child of [0,1] is the net
interval [3/4,1] € Ay, with V([3/4,1]) = V([0, 1]), the net interval in generation ¢
containing 1 is the interval A = [1 — 1/4™, 1] which has V(A) = V([0, 1]), and thus
Uz, t) C A" =[1—1/4™"'] where V(A") = V(]0, 1]). But then up to normalization,
we know that the net intervals contained in A’ are the same as the net intervals
contained in [0, 1] so the case for general ¢ reduces to the case ¢t > 1/4.

5.3.4. On the multifractal formalism. We now dispense with the assumptions on
the parameters p, r and establish the following result.
Theorem 5.7. Any invariant measure p,, associated with the IFS

Si(z)=p-x So(z)=r-az+p(l—r1) Ss(x)=r-z+1—r

where 0 < p,r < 1satisfy p+ 2r — pr < 1 satisfies the complete multifractal formalism.
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Proof. By Corollary 4.13 and the following remark, since the IFS satisfies the
weak separation condition, it suffices to show that the vertex vy = {z — x} is
contained in the essential class. As argued in §5.3.1, the net interval [0, 1] has
children

(A1 =[0,p(1 =), A = [p(L =7),p), A3 = [p, p+7 — pr], Ay = [L = r,7])

in F; with neighbour sets

V(A) ={z—z/(1-1r)} V(Ag):{xr%x/p,xr—)x/r—i-%—l}
V(A;) = {z > —— + %p} V(A,) = {z — 2},

In particular, there is an edge from v, to vy. Moreover, since the word 23 is
in A,, where Ss3(|[0, 1]) is disjoint from S5([0, 1]), S22([0,1]), and S1([0, 1]) by the
assumptions on p and r, it follows that S»3([0, 1]) is a net interval with neighbour
set vg. Thus there is an edge from V(Aj3) to vy. Similarly, the words 11 and 12
are in A,, where Si15([0, 1]) is disjoint from S5([0, 1]), so as computed in §5.3.1, the
children of A; have neighbour sets V(4A;), V(A;), and V(A3). Since there is an
edge from V(Aj3) to v, there is a path from V(A;) to .

It remains to consider the offspring of v, :== V(A,). We will treat the case where
r > p; the case where r < p follows by an analogous argument. Let m be maximal
such that 7™ > p. We will compute the net intervals in generation A,m.

For 0 < k < m write

—— ——

k times k times
For simplicity, given ¢t > 0, write I';, = {S,, : w € A, S,((0,1)) N Ay # @}. Note
that S2(S1(1)) = S1(1) where S;(1) is the right endpoint of A, so that S,, (S1(1)) =
S1(1). Thus by choice of m, we have for k < m

Frk - {STk+1750'07 o1yt ak}

First assume ™' < p. Since 7™ < pand S1([0,1]) D Ay D A, tg(AY) =p
Thus since S12(1) < S3(0) and S,,2 = S,,, we have
Ly =A{mm+1,5 5 -, S }-

Since S(0) > S,,,(1), the net intervals in F, contained in A, are given, ordered
from left to right,

Ai - [S(Ti(o)’ SO’H—I (O>] A™ = [So'm<0)7 ST(O)} Am—H = [57(0)7 So'm(]‘>]

forl < i < m. SlnceFrm 1= {S;'og:geT,}, foreachl <i < m+1,
Sy YA € Frm-1 with V(S;1(AY) = V(A?). But again S, fixes the right endpoint
of A,, so that

Ay D Sy HAY) DAY
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for each 2 < i < m+ 1. In particular, every child of V(A?) is of the form V(A7), and
there is a path from V(A") to V(A') for each i > 2. Moreover, a direct computation
shows that V(A'!) = V(A,), so there is a path from V(A') to vy. Thus there are
no new net intervals, and there is a path to vy = {z — =} from any vertex in the
transition graph, as required.

In the case r™*! = p, we get

Fp = {Tm+27 Sa'lv ey Som+1}

so that I', is a rescaled version of I',», and the argument follows similarly. O

5.4. On an example of Deng and Ngai. In [ , Example 8.5], Deng and Ngai
introduced the following IFS similar in structure to §5.3 but with an additional
overlap. Consider IFS defined by following four maps

Sl (l‘)

px So(z) =rx+p(l—r)
Ss(x) = p~

r?r 4+ (1—r)(p+r) Sa(z) =rz+(1-1)

where 0 < p,r €< 1satisfy r? < pand p(r — 1)(p +r — 1) > r% The constraints on
p and r ensure that S3((0,1)) N S4((0,1)) = @.

The parameters of this IFS are chosen so that S;4 = S»; and S34 = S3;. One can
verify, arguing similarly to Theorem 5.7, that G = G, and hence any associated
self-similar measure satisfies the complete multifractal formalism.

5.5. A modified multifractal formalism for Cantor-like measures. Consider the
family of IFS given by maps

x 4
{S](x)_r+mr(r 1):0<j<m}
where m > r > 2 and m,r are integers. This family of IFS, with appropriate
probabilities, contains rescaled versions of measures such as convolutions of
the usual Cantor measure. In particular, certain self-similar measures in this
family were among the first recognized for which the multifractal formalism can
fail [ ]. The set of local dimensions is known to consist of a closed interval
and, with appropriate probabilities, an isolated point. The L?-spectra have also
been computed, as well as a modified multifractal formalism [ ; ; ;
|; our results here are minor improvements of existing results and are
primarily useful as illustrations of the theorems.
Fix any IFS {S;}.ez in this family with attractor X" and associated self-similar
measure p. Arguing similarly to [ , Proposition 7.1], one may verify that
K =10,1], Kess = (0,1), and

o r—1 (r—1)
HKom = U _[lm‘m’l_ krm J
A6.7:7,'m,71
V(A)EV(gess)
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Then Theorem 4.11 (weak regularity is always satisfied since K = [0, 1]) gives that
each /i, ‘= lp|k,, Satisfies the complete multifractal formalism and

D(pm) = {dimyoc pip(z) : x € (0,1)}.

This provides an alternative proof of some of the results contained in [ ;

] (without the assumption £ < 2r —2) and a variation of [ , Example 6.2].

From the perspective of Corollary 4.13, the obstruction to the multifractal

formalism is combinatorial: there is a cycle outside the essential class which

contributes a point with local dimension not contained in the closed interval
{dimyee p1(7) : & € Kegs}-
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