Tangents and slices of self-affine carpets

ANTTI KAENMAKI & ALEX RUTAR

ABSTRACT. We study the fine scaling properties of planar self-affine
carpets. For Gatzouras-Lalley carpets, we give a precise formula for maximal
Hausdorff dimension of a tangent in terms of the Hausdorff dimension of
the projection and the Assouad dimension of the corresponding vertical slice.
Using regularity properties for the Assouad dimension of non-autonomous
self-similar sets, this implies that the set of points with tangents that are as
large as possible has full Hausdorff measure, at the critical exponent. On the
other hand, we give an explicit example of a Baranski carpet for which the
Hausdorff dimension of the set of points for which there exists a maximal
tangent has Hausdorff dimension strictly less than the Hausdorff dimension
of the original carpet.
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1. INTRODUCTION

A classical problem in geometric measure theory is the following: given a subset
E C RY what can be said about the structure of the set of tangents at points in
E? If E has positive and finite s-dimensional Hausdorff measure, then classical
density theorems (see, for instance, [ , Theorem 6.2]) imply that almost every
point has a tangent with positive Hausdorff s-measure. However, sets which are
not Ahlfors regular can have points with tangents which are much larger than
expected. In general, the maximal possible Hausdorff dimension of a tangent is

given by the Assouad dimension of the set ' [ ; |; this value is attained
by a weak tangent (where the location of “zooming in” is allowed to vary depending
on the scale), but not necessarily by an actual tangent [ I

Moreover, for many well-studied fractal sets, the Assouad dimension and
the Hausdorff dimension can differ, so the classical information concerning the
existence of large tangents cannot reach the threshold of the Assouad dimension.
Motivated by this phenomenon, in [ I, the authors study the structure of
the set of tangents for sets satisfying various weak forms of dynamical invariance
(informally, that the sets contain small potentially highly distorted copies at all
scales and distortions). For general attractors of bi-Lipschitz iterated function
systems, it is shown in [ ] that there necessarily is at least one tangent with
Hausdorff dimension which attains the Assouad dimension, and (essentially)
overlapping self-conformal sets, the authors prove in fact that there the set of
points with tangents of maximal Hausdorff dimension is a full dimension subset.

However, the gap between these two classes of sets is quite large. For instance,
one might hope that in the presence of reasonably well-behaved dynamics, then
most points will have a tangent which is as large as possible. In order to under-
stand this problem more generally, in this paper, we study the question of the
fine structure of tangents for a particular family of self-affine sets (such as those
depicted in Figure 1).

Our results show that in fact whether or not there are many maximal tangents
depends on the geometry of the particular set under consideration. Within our
class of sets, when there is only one direction of maximal contraction, the majority
of points have maximal tangents which are as large as possible. Despite this, there
are still many points for which all tangents are much smaller than expected. This
is explained in Theorem A. On the other hand, we also demonstrate that there
exist self-affine sets for which the majority of points have no large tangents (see
Theorem B). More generally, we obtain precise results relating the dimensions
of tangents to the Assouad dimension of appropriate slices of the corresponding
self-affine set.

In the next section, we introduce the relevant definitions to make the above
definitions precise. We then state our main results in §1.2.

1.1. Assouad dimensions. Fix a compact set K C R?. We say that a compact
set ' C B(0, 1) is a weak tangent of K C R? if it is a Hausdorff limit of successive
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(A) Gatzouras—Lalley (B) Baranski

FIGURE 1. Some self-affine carpets, which are attractors of the iterated
function systems depicted in Figure 2.

magnifications of the set K. We denote the set of weak tangents of K by Tan(K).
More strongly, F' is a tangent of K at z if it is a Hausdorff limit of successive
magnifications of K upon the point z. We denote the set of tangents of K at z by
Tan (K, x). We refer the reader to §2.1 for precise definitions.

Closely related to the notion of a weak tangent is the Assouad dimension of K,
introduced in [ ], which is the dimensional quantity

dimAK:inf{s:EIC>OVO<r§R<IVxeK
R s
< — .
N,(B(z, R) N K) _O(r) }

Here, for a general bounded set F', N, (F)) is the smallest number of closed balls
with radius r required to cover F. It always holds that dimy X' < dimp K <
dimp K < dimy K, where dimy K, dimp K, and dimg K denote the Hausdorff,
packing, and upper box dimensions respectively. In some sense, the Assouad
dimension is the largest reasonable notion of dimension which can be defined
using covers. An observation which goes back essentially to Furstenberg, but was
stated explicitly in [ ], is that the Assouad dimension is characterized by
weak tangents:

(1.1) dimy K = max{dimyg F' : F' € Tan(K)}.

We refer the reader to | ] for more background on Assouad dimensions.

Continuing the analogy with tangents, a localized version of the Assouad
dimension was recently introduced in [ ]. Given z € K, the pointwise
Assouad dimension is

dima (K, ) :inf{s 30 >03p>0M0<r < R<p
R\s
< — .
N,(B(z,R) N K) < (J( : ) }
The choice of p > 0 in the definition of dima(K,z) ensures a sensible form
of bi-Lipschitz invariance: if f: K — K’ is bi-Lipschitz, then dimy (K, z) =
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dima (f(K), f(x)). It is immediate from [ , Proposition 2.2] and the defi-
nition of the pointwise Assouad dimension that

(1.2) sup{dimp F' : F € Tan(K,7)} < dims (K, 2) < dimy K.

Unfortunately, the first inequality can be strict by [ , Example 2.9], and
the second inequality can be strict for all x € K simultaneously by [ ,
Example 2.8]. On the other hand, if K is very regular (for instance, Ahlfors-David
regular), then dimy (K, z) = dimy K for all # € K. We note here that an analogous
notion of pointwise Assouad dimension for measures was introduced recently in
[ B

Of course, there are many sets which are not Ahlfors-David regular, but which
still exhibit enough regularity that one might hope for more to be true. A natural
question, motivated by the general relationship in (1.1), is to understand when
equality holds in (1.2). Some preliminary answers are given in [ , Theorem CJ.
In particular, if K is a self-affine set (or more generally an attractor of a bi-Lipschitz
IFS), then

dima K = max{dimy F': F' € Tan(K,x) and z € K}

and
(1.3) dimp{z € K : dimy (K, z) = dimpy K} = dimp K.
Moreover, if K is a self-similar or self-conformal set, then [ , Theorem 2.12]

shows that in fact equality holds on a very large subset:
(1.4) dimp{x € K : 3F € Tan(K, z) such that dimyg F' = dimy K} = dimy K.

However, there is a relatively large gap between self-conformal sets and general
attractors of bi-Lipschitz IFSs. Motivated by these results, our goal in this docu-
ment is to understand to what extent the results for self-conformal sets extend to
more general IFS attractors.

In the following section, we discuss our main results concerning self-affine sets
and provide some answers which indicate that answers to these questions are, in
general, quite subtle.

1.2. Main results and outline of paper. With these questions in mind, we now
turn our attention to two specific families of affine iterated function systems in
the plane: specifically, the planar self-affine carpets of Gatzouras—Lalley [ ]
and Bararniski | ]. Note that these sets are self-affine but (except for some
degenerate cases) not self-similar. We defer precise definitions and notation to §3.1;
see Figure 2 for examples of the generating maps in these classes. In the following
statement, let n: R* — R be the orthogonal projection onto the first coordinate
axis and for = € R” let £, be the vertical line containing .

Theorem A. Let K be a Gatzouras—Lalley carpet. Then

HIm K (fg € K @ dima (K, z) # dima K}) = 0.
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FIGURE 2. Generating maps associated with a Gatzouras—Lalley and
Barariski system. The parameters from the Bararski carpet correspond
to the example in Corollary 4.6 with § = 1/40.

On the other hand, for any dimp K < o < dimjy K,

dimp{zr € K : dimy (K, z) = a} = dimyg K.

Moreover, if n(K) satisfies the SSC, then for any x € K,
(i) max{dimy F : F € Tan(K,z)} = dimg n(K) + dims ¢, N K,
(ii) dimp (K, x) = max{dimp K, dimg n(K) + dimp ¢, N K}.

Of course, if o ¢ [dimp K, dimy K], then {z € K : dimy (K, z) = o} = @. It follows
immediately from Theorem A that the conclusion (1.4) extends to the class of
Gatzouras-Lalley carpets and that

dima (K, ) = max{dimyg F' : F € Tan(K,z)}

if and only if dimy ¢, N K > dimp K — dimgn(K). Moreover, if s = dimy K,
then 7°(K) > 0 and furthermore #*(K) < oo if and only if K is Ahlfors-David
regular (see [ 1), in which case the results are trivial. We thus see that the
majority of points, from the perspective of Hausdorff s-measure, have tangents
with Hausdorff dimension attaining the Assouad dimension of K. However, we
still have an abundance of points with pointwise Assouad dimension giving any
other reasonable value.

The proof of Theorem A is obtained by combining Theorem 3.12 and Theo-
rem 3.14. The dimensional results given in (i) and (ii) exhibit a precise version of a
well-known phenomenon: at small scales, properly self-affine sets and measures
look like products of the projection with slices. Note that, in order to obtain (i) and
(ii), the strong separation condition in the projection is required or the pointwise
Assouad dimension could be incorrect along sequences which are “arbitrarily
close together at small scales”. The formula holds for more general Gatzouras—
Lalley carpets if one restricts attention to points where this does not happen (see
Definition 3.3).
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For Gatzouras-Lalley carpets with projection onto the first coordinate axis
satisfying the strong separation condition, slices through x are precisely attractors
of a non-autonomous iterated function system corresponding to the sequence of
columns containing the point x (such a phenomenon was exploited in a more gen-
eral setting in [ I)- The proof of Theorem A therefore relies on the dimension
theory of non-autonomous self-similar sets as studied in [ ]. We present the
required results in §2.3.

However, it turns out that the fact that Gatzouras-Lalley carpets have an
abundance of large tangents does not extend to the non-dominated setting.

Theorem B. There exists a Baratiski carpet K such that

dimp{z € K : dima (K, z) = dimp K} < dimg K.

The conclusion (1.3) is thus not valid for the Hausdorff dimension in general. The
proof of Theorem B is given in Corollary 4.6, and it follows from a more general
result—namely Theorem 4.4—describing when Baranski carpets satisfying certain
separation conditions have a large number of large tangents. The proof follows
from formulas for the pointwise Assouad dimension at points which are coded
by sequences which contract uniformly in one direction; see Proposition 4.3 for a
precise formulation.

The key distinction between Barariski carpets and Gatzouras-Lalley carpets is
that Baraniski carpets are not dominated; see for instance [ , §2.4] for a precise
definition in the general planar self-affine setting. A natural question therefore is
if this phenomenon is specific to the non-dominated setting.

Question 1.1. Let K be a non-empty dominated self-affine set, with or without overlaps.
Does it necessarily hold that

dimg{zr € K : dimy (K, z) = dimpa K} = dimyg K7

What about the corresponding question for tangents?

1.3. Notation. Throughout, we work in R? equipped with the usual Euclidean
metric. Given functions f and g, we say that f < g if there is a constant C' > 0 so
that f(z) < Cg(x) for all z in the domain of f and g. We write f =~ g if f < g and

g3 f.

2. TANGENTS AND POINTWISE ASSOUAD DIMENSION

2.1. Tangents and weak tangents. To begin this section, we precisely define the
notions of tangent and weak tangent, and establish the fundamental relationship
between the dimensions of tangents and the pointwise Assouad dimension. These
results will be used to find a lower bound for the pointwise Assouad dimension
of a Gatzouras-Lalley carpet by means of symbolic fibres.

Given a set £ C R? and ¢ > 0, we denote the open §-neighbourhood of E by

E® = {z € R?: 3y € E such that |z — y| < §}.



TANGENTS AND SLICES OF SELF-AFFINE CARPETS 7

Now given a non-empty subset X C R?, we let K(X) denote the set of non-empty
compact subsets of X equipped with the Hausdorff metric

dy (K1, K2) = max{py (K1; K2), pu(Ka; K1)}
where
pu(Ky; Ks) = inf{6 > 0: Ky ¢ K.
If X is compact, then (K(X), dy,) is a compact metric space itself. We also write
dist(Ey, By) = inf{|z —y| : x € Ey,y € Ey}

for non-empty sets £y, By C R

We say that a set F' € KC(B(0,1)) is a weak tangent of K C R? if there exists
a sequence of similarity maps (7})72, with 0 € T} (K) and similarity ratios A
diverging to infinity such that

F = lim T,(K) N B(0,1)
k—o00
in K£(B(0,1)). We denote the set of weak tangents of K by Tan(K). A key feature
of the Assouad dimension is that it is characterized by Hausdorff dimensions
of weak tangents. This result is originally from [ , Proposition 5.7]. The
following version is the recent improvement [ , Corollary BJ.

Proposition 2.1. If K is a compact set, then

o :=dimp K = max dimglt.
FeTan(K)

Moreover, the maximizing weak tangent F' can be chosen so that HS (F') > 1.

In a similar flavour, we say that F'is a tangent of K at x € K if there exists a
sequence of similarity ratios ()72, diverging to infinity such that

F = lim \(K —2) N B(0,1)
k—o0
in K£(B(0,1)). We denote the set of tangents of K at x by Tan(K, ).

Of course, Tan(K,z) C Tan(K). Unlike in the case for weak tangents, we
require the similarities in the construction of the tangent to in fact be homotheties.
This choice is natural since, for example, a function f: R — R is differentiable at
x if and only if the set of tangents of the graph of f at (x, f(x)) is the singleton
{B(0,1) N ¢} for some non-vertical line ¢ passing through the origin. In prac-
tice, compactness of the group of orthogonal transformations in R? means this
restriction will not cause any technical difficulties.

Let us next recall from [ ] some of the recent results on the connections
between tangent sets and pointwise Assouad dimension. The first result is [ ,
Proposition 2.2].
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Proposition 2.2. For any compact set K C R and x € K, dima (K, x) > dimg F for
any F € Tan(K, ).

The next result follows from [ , Proposition 2.11].

Proposition 2.3. Let K C R? be a self-affine set. Then for all x € K, we have
dimy (K, z) > dimg K.

We also recall from [ , Proposition 3.1] an alternative characterization of the
Assouad dimension by localized packings of balls which may have very different
sizes. Let X be a bounded metric space. If x € X and R € (0, 1), then the family of
all localized centred packings is

. ‘O<Ti§R,JJZ‘€X,B(ZL’Z',Ti)CB(Z‘,R),
pack(X,a:, R) - {{B(x“rl)}l ) B(IL‘Z',TZ‘) N B(l’j,?“j) = fOI' all ¢ 7&] )

The collections here may be finite or countably infinite. In a similar way to how
box and packing dimensions are related (see, for instance, [ , Section 2.6]), we
have the following “disc-packing” formulation of the Assouad dimension.

Proposition 2.4. Let X be a bounded metric space. Then

dimy X = inf{a Y0 < R < 1Yz € XV{B(x:,r:)}2, € pack(X, z, R)

ir? <a Ra}.

=1

2.2. Metric trees. First, fix a reference set {2 and write 7o = {Q2}. Let {7 }2, be a
sequence of countable partitions of €2 so that 7., is a refinement of the partition
Ti. For each Q € T, with k € N, there is a unique parent @ € Te—1 with Q C @
Suppose that for any v, # v, € Q there is a k € N such that there are ); # Q2 € T
so that v € @1 and v, € Q2. We call such a family {7;}72, a tree, and write
T =UiZo Tr-

Now, suppose that there is a function p: 7 — (0, co) which satisfies

~

1. 0 < p(Q) < p(Q), and
2. thereis a sequence ()52, converging to zero from above such that p(Q) < 7y

forall Q € Ty.
The function p induces a metric d on the space €2 by the rule

d(y1,72) = inf{p(Q) : Q € T and {71,7} C Q}.

In particular, diam(Q) = p(Q) with respect to the metric d. We then refer to the
data (2, {7k}, p) as a metric tree.

We say that a subset A C 7T is a section if (); N Q2 = @ whenever Q;,Q> € A
with Q1 # Q,. If UQe 1@ = Qo, we say that A is a section relative to ()y, and we
say that a section is complete if it is a section relative to (2. Note that sections are
necessarily countable and, for example, each 7}, for k € NU{0} is a section relative
to Q2. The set of sections is equipped with a partial order A, < A, if for all @ € A,
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there is a ()2 € A, such that )2 C @;. In this situation, we say that A, is refined
by A,. This partial order is equipped with a meet: that is, given a finite family of
sections A, ..., A,, there is a unique section A; A --- A A,, which is maximal with
respect to the partial order such that

AN NA, <A,

foralli=1,...,n.
A metric tree is equipped with a natural family of sections relative to {2 which
respect the geometry of the metric d. We define

~

(2.1) T(r)={QeT:pQ) <r<pQ)}

~

where, abusing notation, we write p({2) = co. Property 1 above ensures that this is
indeed a section and property 2 ensures that 7, < 7 (r) for all & sufficiently large.

2.3. Regularity of non-autonomous self-similar sets. We now recall some of
the results on non-autonomous self-similar sets from [ ]. We require more
than just the dimension of non-autonomous self-similar sets (as already follows,
for instance, from [ 1); a key feature required in our proofs are the reg-
ularity properties of the similarity dimensions of the finite components of the
non-autonomous IFS.

Foreachn € N, let 7, be a finite index set with #.7,, > 2, and let ®,, = {5, } e,
be a family of similarity maps .S, ;: R? — R? of the form

SnJ(.’,C) = T'nJOn’jCC + dnJ’

wherer, ; € (0,1) and O, ; is an orthogonal matrix. To avoid degenerate situations,
we assume that

(2.2) lim sup{ry, -+ 7n;, : Ji € Jiforeachi=1,...,n} =0
n—oo

and that there is a compact set X C R* which is invariant such that S, ;(X) C X for
alln € Nand j € J,. Associated with the sequence (®,,)7° ,, there is a non-empty
and compact limit set

K = ﬂ U Sl,jlo"'OSn,jn<X)-

n=1 (jlv“)jn)ejl X"'Xjn

Under these assumptions, the sequence (®,,)>° , is called a non-autonomous iterated
function system (IFS) and the limit set K is called the non-autonomous self-similar set.

We can associated a natural metric tree to every non-autonomous self-similar
set. Let 7 = |J,~, 7» denote the set of all cylinder sets in the infinite product space
A =T]>", Jn, where

7:;—{[jh---,jn]—{j1}><"'><{jn}>< H Ji:Ji € J; for i—l,...,n}.

k=n+1
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Note that the unique cylinder in 7; is the set A. Given a cylinder Q = [j1,. .., jn] €
T, we write p(Q) = r1;, -+ Tnj,. LThe triplet (A, {7}, p) is then a metric tree.
We define 7: A — R by the relation

{W((in)ﬁ‘oﬂ)} = ﬂ SLZ& -0 Sn,zn(X)

This function is well-defined by (2.2), and it is easy to see that 7 is Lipschitz so
that 7(A) = K.

We say that a non-autonomous IFS (®,,)7° ; satisfies the open set condition if the
invariant compact set X can be chosen to have non-empty interior U = X° so that
foreachn € Nand j # j' € J,, we have 5, ;(U) N S, ;;(U) = @. Furthermore,
we say that the IFS has uniformly bounded contraction ratios if there is a constant
Tmin > 080 thatr, ; > ry, foralln € Nand j € J,.

Our first lemma follows from [ , Theorem 2.9 and Proposition 2.5].

Lemma 2.5. Let ()5, be a non-autonomous self-similar IFS satisfying the open set
condition and with uniformly bounded contraction ratios. Denote the associated non-
autonomous self-similar set by K and the metric tree by A. Then dimp K = dimy A.

For each non-autonomous IFS (®,,)5° , let #(n, m) be the similarity dimension of
the IFS®, 10 0®, ={fr0o- -0 f, : fi € D,4;} defined by

m—1
Z e Z H TZ(_&ZLZH =L

jl €Jn jm€s7n+m71 k=0

The following theorem follows by combining [ , Theorem 2.9, Proposition 3.5,
Lemma 4.2, and Theorem 4.3].

Theorem 2.6. Let (®,,):°, be a non-autonomous IFS satisfying the open set condition
and with uniformly bounded contraction ratios. Denote the associated non-autonomous
self-similar set by K. Then for every n,m,k € Nandn <n' <n+k,

(i) O(n,m + k) < max{f(n,m),0(n+m,k)}, and

(i) [0(n,m+ k) —0(n/,m)| S £.
Moreover,

(2.3) dimy K = lim supf(n,m) = lim sup 0(n,m)

m—00 neN ,rnne,ﬁ% nex N

forall k € N, where kN = {xn : n € N}.

3. TANGENT STRUCTURE AND DIMENSION OF
GATZOURAS-LALLEY CARPETS

In this section, we introduce the definitions of Gatzouras-Lalley and Bararski
carpets and prove our main results on tangents and pointwise Assouad dimension
of Gatzouras-Lalley carpets.
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3.1. Gatzouras-Lalley and Baranski carpets.

3.1.1. Defining the maps. Fix an index set Z with #Z > 2, and for j = 1,2 fix
contraction ratios (f; j)icz C (0, 1) and translations (d; ;)icz C R. We then call the
IFS {T;}icz diagonal when

E(l‘l, $2) = (ﬁi71$1 + di,l, ﬁi,zl‘g + di,g) fOI' each 1 € 7.

Let n; denote the orthogonal projection onto the j coordinate axis, i.e. n;(z1, 72) =

z;. We denote by A; = {5, ; }icz the projected systems, where n; o T; = S; j o n;. We

will often write n = 7, to denote simply the projection onto the first coordinate

axis. Of course, S; ;(x) = f; ;& + d; ; are iterated function systems of similarities.
LetZ* =J,-,Z" and for i = (iy,...,4,) € Z* and j = 1,2, write

Sij =50 085

and

Pi = Diy - Piys
Bij = Birg " Bing-

Forn € Nand v € Q := IV, we write 71,, to denote the unique prefix of v in Z".

Now 7, induces an equivalence relation ~; on Z where i ~ i" if S; ; = Sy ;. Let
n;: I — Z/ ~; denote the natural projection. Intuitively, 7,(7) is the set of indices
which lie in the same column or row as the index i. Then 7n; extends naturally to
amap on Q by n;((1,)5%,) = (7;(i))22; C n;(2)N = n;(ZV); and similarly extends
to a map on Z*. For notational clarity, we will refer to words in Z* using upright
indices, such as i, and words in 7;(Z*) using their underlined variants, such as i.
Note thatif i ~; j, then and S; ; = S; ;. In particularly, we may unambiguously
write S; ; and f; ; for i € n;(Z%).

Associated with the IFS {T;};cz is a unique non-empty compact attractor K,
satisfying K = (J,.; T;(K). Note that the projected IFS {S; ; }icz has attractor K; =
n;(K) for j = 1,2. Recalling that Q2 = Z%, let 7: Q2 — K denote the continuous map
uniquely defined by

{7((@)721)} = lim S, 008 (K).
Without loss of generality, and for the remainder of this document, we will assume
that K C [0, 1]?. We can now introduce our two primary classes of self-affine sets.

Definition 3.1. We say that the carpet is of type Gatzouras—Lalley if:
1. T;((0,1)®) N T3((0,1)?) = @ for all i # j,
2. either S;1((0,1)) = S;,17((0,1)) or S;1((0,1)) N S;1((0,1)) = @ for all 4, j, and
3. 51'71 > ﬁ@g forall i € Z;
and type Barariski if:
1. T;((0,1)*) N T3((0,1)?) = @ for all i # j, and
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2. either S;,((0,1)) = S(;,»((0,1)) or S; ¢((0,1)) N.S;,((0,1)) = @ for all ¢, j and
(=12

Moreover, we say that an IFS { f; },cz with attractor K satisfies the strong separation
condition (or SSC for short) if f;(K) N f;(K) = @ foralli # j € 7.

3.1.2. Dimensions of Gatzouras—Lalley carpets. To conclude this section, we recall
some standard results on the dimensions of Gatzouras-Lalley carpets. We defer
the corresponding results for Barariski carpets to §4.1.

Before we do this, we first recall the notion of the lower dimension, which is in
some sense dual to the definition of Assouad definition. Let X' C R? be compact.
Then the lower dimension of K is given by

dimLK:sup{s:ElC>OVO<r§R<l‘v’xeK
R\s
N,(B(z,R) N K) > (J(-) }
T
In order to state our results on the Hausdorff dimensions, we must also introduce

some notation for Bernoulli measures. Let P denote the collection of probability
vectorson Z, i.e.

P="P(1) = {(pz-)ig tp; > 0foralliand » p; = 1},

1€T

Equip P with the topology inherited from R%. Given p € P, considering p as a
probability measure on Z, we let p" denote the infinite product measure supported
on . We let y,, = m,p" denote the corresponding invariant measure on K, where
7. denotes the pushforward map. Note that the projections 7; also induce natural
maps n;: P(Z) — P(n;(Z)) by n;(p)e = Zienj*l(g) pi-

Given a probability vector p € P, we write

H(p)=—) pilogpi and  x;(p)=—)> pilogf;.

€T €T

We now recall the main results of [ ]—stated below in (i) and (ii)—as well
as the result of [ ]—stated below in (iii). We also note that the same proof
as givenin [ ] (which is explained more precisely in [ , Theorem 2.13])

gives the analogous result for the lower dimension.
Proposition 3.2 ([ ; D. Let K be a Gatzouras—Lalley carpet.
(i) The Hausdorff dimension of K is given by

dimpy K = sup s(p)
peP

where

_ H(n(p)) , H(p) — H(n(p))
s(p) = x1(p) " X2(P) .
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Moreover, the supremum is always attained at an interior point of P (i.e. at vector
w € Pwithw; >0 foralli € I).

(ii) The box dimension of K exists and is given by the unique solution to

Z ﬁdlmB n(K dlmB K—dimp n(K) —1 where Z dlmB n(K —1

€L Jjen()
(iii) The Assouad dimension of K is given by

dimp K = dimp n(K) + max t({)
Len(1)

where t({) is defined as the unique solution to the equations

Z f,(e

jen—()

Similarly, the lower dimension of K is given by

dimy, K = dimg n(K) + min ¢({).
Len(1)

3.1.3. Regular points and interior words. We conclude this section with the notion
of a regular point and an interior word. Heuristically, a regular point is one which
uniformly avoids points in other columns; note that we do not require such a
property within each columns.

Definition 3.3. We say that a point = € K is reqular if for each r € (0, 1), there is
an i € Z* with f; ; < rsuch that B(n(z),r) Nn(K) C Si1(n(K)). Given i € Z*, we
say that i is an interior word if S; ; ([0, 1]) C (0,1). We let B,, C Z" denote the set of
interior words of length n.

The following lemma is standard. Recall that 2 = Z" is the symbolic space
coding the attractor K. Here, and elsewhere, givenann € Nand Y C I", we
embed V" in 2 in the natural way. We will abuse notation and interchangeably
refer to elements in the subsystem or in the full system.

Lemma 3.4. Let K be a Gatzouras—Lalley carpet.
(i) If n(K) satisfies the SSC, then each x € K is reqular.
(ii) Suppose v € B for some n € N. Then t(v) is regular.

We can now guarantee the existence of large subsystems consisting only of regular
points. This result is essentially [ , Lemma 4.3].

Proposition 3.5 ([ D. Let K be a Gatzouras—Lalley carpet corresponding to the IFS
{T;}icz. Then for every € > 0, there is an n € N and a family J C 1" so that the IFS
{T} : j € J} with attractor K. satisfies the following conditions:

(i) each i € J is an interior word,

(ii) dimg K, > dimg K — ¢,
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(iii) dimp n(K.) > dimgn(K) — ¢, and
(iv) there are 0 < py < p1 < 1sothat ;1 = pyand P2 = ps forall i € T and each
column has the same number of maps.
In particular, each x € K. is a regular point with respect to the IFS {1, },c1 and dimp K, =
dlmH Ke = lelL Kﬁ.

Proof. First, if K is contained in a vertical line, then K is the attractor of a
self-similar IFS in R and the result is substantially easier. Now applying [ ,
Lemma 4.3], there exists a family J, C Z"° with attractor K satisfying conditions
(ii), (iii), and (iv). By condition (iv), thereis a t € R so that¢(i) = ¢ for all i € J.
Therefore

and since K is not contained in a vertical line, we may assume that dimg 7(K,) > 0.

Since 7(K)) is the attractor of a self-similar IFS, iterating .7, if necessary and
removing the maps in the first and last column, obtain a family J C J;* with
corresponding attractor K, such that ¢(j) = ¢ for any j € J, and dimpn(K.) >
dimp n(K’) — €. Since words which correspond to rectangles that do not lie in the
first or last column are necessarily interior words, combining this construction
with Lemma 3.4 provides a family 7 satisfying the desired properties. O

3.2. Approximate squares and symbolic slices. A common technique when
studying invariant sets for iterated function systems on some index set 7 is to
tirst reduce the problem to a symbolic problem on the coding space Z*. However,
the main technical complexity in understanding the dimension theory Gatzouras-
Lalley carpets, and more generally self-affine sets, is that the cylinder sets 7} (K)
are often exponentially distorted rectangles. As a result, we will keep track of two
symbolic systems simultaneously, which together will capture the geometry of the
set K.

Fix a Gatzouras-Lalley IFS A = {T;},c7z. We first introduce some notation for
handling cylinders. We then associate with the IFS A, and the related defining
data that we introduced in §3.1, two important metric trees: first, the metric tree of
approximate squares, and second the metric tree of symbolic slices.

First, recall that Q = ZV is the space of infinite sequences on Z. Given k €
NU{0} and a word i € Z*, we define the cylinder corresponding to i by

il ={veQ: =1}

The family of cylinders {[i] : i € Z"}$°, defines a tree: we will often abuse notation
and simply refer to {Z"}5°, as a tree. We will associate with this tree a variety of
metrics, such as those induced by the maps i — 3, ; for j = 1,2. We will also use
the same notation for the projected words {n(Z*)}32,.

Next, we define the metric tree of approximate squares. Before we do this, we
introduce the notion of a pseudo-cylinder. Suppose i € Z% and j € n(Z*). We then
write

P(lvl) = {’y = (Zn)zozl € (Zlaalk) =1iand n(ik-‘rh"'vik-f-ﬁ) :l}
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FIGURE 3. Two iterations of a Gatzouras—-Lalley IFS within a cylinder,
with a wide pseudo-cylinder in highlighted in blue and a tall pseudo-
cylinder in red.

Note that map (i, j) = P(4, j) is injective. Another equivalent way to understand
the pseudo-cylinder P(i, j) is as a finite union of cylinders inside the cylinder [i],
all of which lie inside the same column; that is,

(3.1) P(i,j)= |J [iK.

C xen 1Y)

We refer the reader to Figure 3 for a depiction of the definition of a pseudo-cylinder.
Now given an infinite word 7 € (2, let L;(7) be the minimal integer so that

/87171 o ‘/B’YLk('y)71 < /87172 o ‘/B’Yk’vz'

In other words, L (7) is chosen so that the level L;(v) rectangle has approximately
the same width as the height of the level k rectangle. Write 71, ,, = 1j where
i € Z%. We then define the approximate square Qi (y) C Q by

Qr(7) = P(1,1(3))-

While different ¥ may define the same approximate square, the choice of i and 7(j)
are unique. For fixed i, let /(i) C n(Z*) denote the set of j so that P(1,j) is an
approximate square. Of course, Q.11(7) C Qx(7y) and moreover for any 7,7’ € €,
either Qx(v) = Qr(y) or Qi(v) N Qx(7') = @. In particular, (1) is a complete
section and the approximate squares P(i, j) are disjoint in symbolic space for
fixed i. -

We say that a pseudo-cylinder P(i, j) is wideif j < k for somek € U(1); in other
words, P(i, j) contains approximate squares of the form P(i,k). Otherwise, we
say that P(i, j) is tall. In other words, one can think of the w1de pseudo-cylinders
as “interpolating” between the cylinder P(i, @) = [i] and the approximate square
P(1,3) = Qu(7):

Denote the set of all approximate squares by

Se={Qr():v€Q} and S=[JS

As discussed above, every approximate square is uniquely associated with a pair
(4, j ), so we may therefore define a metric induced by p(Q)) = S; 2, which makes
the collection of approximate squares into a metric tree.
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To conclude this section, we define the metric tree of symbolic slices. Suppose
we fix a word 7 € 2. The word v = (i,,)7°, defines for each n € N a self-similar
IFS ®,, = {S;2: j € Y (n(i,))}. This IFS is precisely the IFS corresponding to the
column containing the index i,.. Note that there are only finitely many possible
choices for the ®,,, so the sequence (®,,)2° ; has as an attractor a non-autonomous
self-similar set K,y and corresponding metric tree €2(n(7)), as defined in §2.3.
This non-autonomous IFS has uniformly bounded contractions and satisfies the
OSC with respect to the open interval (0, 1). For notational simplicity, we denote
the cylinder sets which compose this metric tree as

Fn(’y),n = {[jh- e ajn] : (jla S 7]n) €Py XX (I)n} and ‘7:77(’7) = U ‘Fn(’y),rv
n=0

We call K, the symbolic slice associated with the word ~. If the projected IFS
{Si1 Yien(z) satisfies the SSC, then if x = n(7 (7)),

{z} x Ky = n(z) N K

is precisely the vertical slice of K containing . In general, K, is always con-
tained inside a vertical slice of K. The symbolic fibre K, (and its associated
Assouad dimension) was introduced and studied in [ , §1.2] in the more
general setting of overlapping diagonal carpets.

3.3. Tangents of Gatzouras-Lalley carpets. It turns out that the pointwise As-
souad dimension at = 7(7) is closely related to the Assouad dimension of the
symbolic fibre K,,,). In this section, we make this notion precise, and moreover
use it to construct large tangents for Gatzouras—Lalley carpets.

In our main result in this section, we prove that approximate squares con-
taining a fixed word v € Q converge in Hausdorff distance to product sets of
weak tangents of K, with the projection n(kK’), up to some finite distortion and
contributions from adjacent approximate squares. First, we define

Py (2,y) = (S%lLk(,Y),l (@), S%ig(?i))

By choice of L(7), the maps ®; - are (up to some constant-size distortion) homo-
theties. One can think of ®; , as mapping the approximate square 7(Qx (7)) to the
unit square [0, 1]*.

Proposition 3.6. Let K be a Gatzouras—Lalley carpet and let v € (2 be arbitrary. Suppose
(1,)92, is any sequence such that n(i,) = n(v1,). Then

(3.2) P (N(K) % (S5, (Kyiyy) N0[0,1]); @y (K) N [0,1]%) S "

where k = max{% i € I} € (0,1). Moreover, suppose vy is regular. Then for any
v € Qand F € Tan(K,n (7)), there is an E € Tan(K,,) and a similarity map h so that
h(F) C n(K) x E.
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Proof. We first prove that

dy (1(K) x (S5, 2 (Fy)) N[0,1]), @y (m(Qn(7)))) < K"

Fix n € N and write k = L,(v). Let Q,(v) = P(v1,,]j) and enumerate n=1(j) =
{j1,---,jn} C IF™. Observe that n(T},(K)) = Sj,1(K) does not depend on
the choice of i = 1,...,m. Now &, (T} ;,(K)) is contained in the rectangle
n(K)xSj, 2(K). Moreover, the rectangle n(K) x S;, (/) has height < x". Therefore

(33) iy <n<K> < Ss.a((0.1), <I>n,7<@n<v>>> <

But approximating the set S;, ([0, 1]) N K, at level n with cylinders at level
k = L, (v), using the fact that n(i,) = n(v1,),

(3.4) dy (Sinlg(Kn(v)) N 10,15 [J S;..2(00, 1])> SR

i=1

Combining (3.3) and (3.4) gives the claim. In particular, noting that @, (y) C K
and ®,,,(Q. (7)) C [0,1]? gives (3.2).

Now suppose in addition that = () is regular and let » > 0 be arbitrary.
Since 7 is regular, there is an n € Nwithr < 3, ; < r such that

B(z,r)nK C | Ty, (K)

j=1

where

{i1,... it ={ie€I":n(i) =n(y1,) and T (K) N B(z,r) # @}.

Now exactly as before, each rectangle 7} ,(K’) has width ~ r and height < rx".
Therefore identifying » € K with the analogous point = € K, there is a simi-
larity map h, with contraction ratio in some interval [1, | for a fixed ¢ depending
only on the IFS so that

pu (71K = 2) 0 B(0,1); he(n(K)) x 17 (Kyp) — ) S K™

Now suppose F' € Tan(K, z) so that F' = lim,,_,o, 7, ' (K — z) N B(0, 1). Passing to
a subsequence, we may assume that the £, have contraction ratios converging to
some 1 > 1. Thus passing again to a subsequence, let Fyy = lim,,_,o(ror,) " (K —
x) N B(0,1). Since ry > 1, we have F' C Fy. Passing again to a subsequence, let

lim (ror,) " (Kyy) — ) N B(0,1) = E € Tan(K,)).

n—oo

Thus ry'F C Fy C n(K) x E, as claimed. O
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To conclude this section, we establish our general result which guarantees the
existence of product-like tangents for arbitrary points in Gatzouras—Lalley carpets.

Proposition 3.7. Let K be a Gatzouras—Lalley carpet. Then for each x € K, there is an
F € Tan(K, z) so that

¢ dimp n(K)+dima Kn(“/)(F) >1

Y

where v € Q) is such that 7(y) = x. In particular,
dima (K, z) > max{dimg n(K) 4+ dimp K, dimp K'}.

Proof. We will construct the set I essentially as a product n(K') x E where E'is a
weak tangent of K. First, recall from Lemma 2.5 that dima K,y = dima Q(n(7)).
Thus by Proposition 2.1, there is a sequence (n;);2, diverging to infinity and words
ix € I™ with n(ix) = 71, such that

E = lim S!

k—o0 1g2

(Kn(v)) M 1[0, 1]

has HYma Ko (E) > 1.

Thus by Proposition 3.6 applied along the sequence (i), since the images
@, (0,1]?) are rectangles with bounded eccentricity containing 7(v), there is a
tangent /' € Tan(/, z) containing an image of n(K’) x E under a bi-Lipschitz map
with constants depending only on K. But n(K) is Ahlfors-David regular so that

74 dime 7 (K)+dima Koo (F) > pdimn n(K)+dima Ko (W(K> X E) 21

as claimed. The result concerning dimy (K, z) then follows by Proposition 2.2 and
Proposition 2.3. O

3.4. Upper bounds for the pointwise Assouad dimension. We now prove our
main upper bound for the pointwise Assouad dimension of Gatzouras-Lalley
carpets. As a result of the local inhomogeneity of Gatzouras—Lalley carpets,
obtaining good upper bounds requires some care. We will prove a sequence of
lemmas which, morally, provide optimal covers for a variety of symbolic objects:
these covers will then be combined to obtain our general upper bound for the
pointwise Assouad dimension.

We first show that, as a result of the vertical alignment of their component
cylinders, pseudo cylinders can essentially be covered by their projection. Recall
that S denotes the set of all approximate squares. Then if P(i,j) is any wide
pseudo-cylinder, we can write it as a union of the approximate squares in the
family

Q(i,j)={Q €S : Q= P(i,k) forsomek € n(Z*) and Q C P(i, j)}.

Since each () = P(i,k) for some k, we have () € S(f;2) so that this family of
approximate squares forms a section.
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Lemma 3.8. Let P(i, j) be a wide pseudo-cylinder. Then

51.7 dimp n(K)
ronp~ ()

Proof. First, enumerate Q(i, j) = {Q1,...,Qn}, and foreachi =1,...,m, there
is a unique k; so that Q; = P(i,k;). Moreover, {k,, ... ,k,, } forms a section relative
to [j], so that writing s = dimp n(K) and recalling that n(K) is the attractor of a
self-similar IFS satisfying the open set condition,

m
(3.5) > Bia=

i=1
But By, 1 = S since each Q; is an approximate square, which gives the desired
result. O

In the next result, we provide good covers for cylinder sets using approximate
squares with diameter bounded above by the height of the corresponding rectangle.
Heuristically, a cylinder set can first be decomposed into approximate squares
using Lemma 3.8, and an “average” approximate square itself has box dimension
the same as the box dimension of K. To make this notion precise, we simply
reverse the order: we begin with a good cover for the box dimension of K, and
take the image under some word i. The image of each approximate square is a
wide pseudo-cylinder, so we may apply Lemma 3.8 to complete the bound.

Lemma 3.9. Suppose i € 7* and 0 < r < f3; 5. Then
dimp K ) dimp n(K)
#aesm: oo~ (22) (3

Proof. Fixi € T* and 0 < r < f3; 5. Write 0 = 1/[3; 5, so by inspecting the proofs
of , Lemmas 2.1, 2.2, & 2.3], we see that

HS(6) ~ (1/5)dme

Enumerate S(§) = {Q1,...,Qn} and for each i = 1,...,m, we may write Q; =
P(ji, k;) for some j; € Z* and k; € n(Z*). Then foreachi=1,...,m,

Q(iji k;) C S(r) and [i] = U U Q.

1=1QeQ(iji.k;)

Thus by Lemma 3.8 applied to each pseudo-cylinder P(ij;,k;), since @; is an
approximate square and 3.k, 1 = 35,2,

[
NgE

#HQ e S(r): Q C[if} Qiji k)

7
Ble ) dimgp n(K)
()

=1

i
Ms

=1
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6'2 dimp K 6'1 dimp n(K)
~(7) ()

as claimed. 0

To conclude our collection of preliminary lemmas, we use the Assouad dimension
of the symbolic fibre K, to control the size of “column sections” of approximate
squares. We note that the word i appears in the hypothesis but not the conclu-
sion: this is simply to clarify the application of this lemma when it is used in
Proposition 3.11.

Lemma 3.10. Let ¢ > 0 and y € 2 be arbitrary. Suppose k € N and Qx(v) = P(1, j).
Let A be any section of T* such that A < 1~"(j). Then

dimA KTI(’Y)J’_E
: :Bk,2 5677 1‘
ke A

Proof. The assumption on the section A precisely means that {ik : k € A} isa
section relative to i in F,,). Then by Proposition 2.4 applied to the metric space
Q(n(7v)) (recalling that dimy Q(n(y)) = dima K,y from Lemma 2.5), since A is a

section,
5ik 9 dlmA K”I(’Y)+E
> (52) Sl
keA 1,2
Cancelling the ; » gives the desired result. O

Finally, by combining the various counts that we have established earlier in this
section, we are now in position to compute the upper bound for the pointwise
Assouad dimension.

Let us begin with an intuitive explanation for this proof. Since z is regular,
we will reduce the problem of computing covers of balls to computing covers for
approximate squares. Thus suppose we fix an approximate square P(i, j), which is
the union of cylinders {ik : (k) = j}. We wish to cover this set with approximate
squares in S(r). There are two cases. First, the rectangle corresponding to the
cylinder ik has height greater than or equal to r, in which case we simply keep this
cylinder and obtain a good bound for the cover using Lemma 3.9: this is the family
A;. Otherwise, the rectangle is shorter, and we instead want to cover groups
of cylinders simultaneously. Such groups are precisely wide pseudo-cylinders
corresponding to elements of A, and have height r, which we can then cover using
Lemma 3.8. These covers are then combined using Lemma 3.10.

Proposition 3.11. Let K be a Gatzouras—Lalley carpet and suppose x = m(y) € K.
Then

dima (K, z) > max{dimp K, dimyg n(K) 4+ dima K}

with equality if x is reqular.
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Proof. Recalling the general lower bound proven in Proposition 3.7, we must
show that

dimy (K, ) < max{dimg K, dimy 7(K) + dimp K, } = ¢
when 7 is regular. We obtain this bound by a direct covering argument. We will

prove that for any £ € N and approximate square Qx(v) = P(1,j),if 0 <r < Bi o,
then =

N\ ¢
(3.6) #{Q e S(r): Q c Qu(m} < (5172) .

r
Assuming this, since z is regular, for any ball B(z, R), there is an R’ < R and at
most two approximate squares ()1, Q> € S(R’') lying in the same column such
that B(z, R) C n(Q1) Un(Q2). Since Q1, Q» lie in the same column, Q; = Qy, (v;)
for some k; € N where 7(v;) = n(y). Moreover, if 0 < r < Rand @ € S(r) is
arbitrary, then diam 7(Q)) < r. Thus (3.6) immediately gives the correct bound, up
to a constant factor, for N,.(B(z, R) N K).

It remains to prove (3.6). Fix an approximate square Q;(y) = P(i,j) and
suppose 0 < r < 3; o is arbitrary. First, let

Ao =0 () A Fuy(r/Biz)  and A= {ik:k € A}.
We then decompose A = A; U Ay, where
Al == ./4 \ fn(»y) (T) and ./42 = A N Fn(,y) (7”)

First, suppose ik € A;. Then, by definition, 5ix > > r which, by definition of Ay,
implies that (k) = j. Thus by Lemma 3.9 applied to the cylinder ik and scale r,
since dimp 7(K) < dimp K and Bix1 ~ (i 9,

B‘k ) dimp K 1 dimgp n(K)
(3.7) #{Q € S(r): Q C [ik]} ~ ( % ) (ﬁ_) .
k,2

Otherwise, suppose ik € Ay C Fy)(r). Since Ay < 77'(j), there is a j so that
n(k)j’ = j. Thus choice of j’ ensures that

P(ik, j') = Qx(v) N [ik].

Thus by Lemma 3.8 and since Q1.() = P(1, j) is an approximate square,

1 dimp n(K)
W

Thus by applying (3.7) and (3.8) to the respective components and recalling that
Pix2 =~ r whenever ik € A,,

#{Q € S(r) : Q C Qw(7)}

38  #{QeS(r):QC Quly)N[iK} = #Q(ik, §') ~ (
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=) #{QeSr):QCik}+ > #{QeS(r):QCQu(y)N[ik]}

ike Ay ike Ao

/B'k ) dimg K 1 dimp n(K) 1 dimgp n(K)
ike Ay ike A

/Bik,Q C /6 dlmAK () dlmAK (v)
Z ( r /Blk ﬁk T Z 7”

ike Ay ik€Ag

= (B12) Z BdlmAKnﬁ)

kEAo
< /81,2
~\r

where the last line follows by Lemma 3.10 applied to the section Ay. Thus (3.6)
follows, and therefore our desired result. O

Q

AN

3.5. Dimensions of level sets of pointwise Assouad dimension. Given an index
i € T, let ®,;) denote the IFS corresponding to the column containing the index i,
that is

q)n(z) - {Sj72 : .] € Z and T](.]) = 77<Z>}

Now given a word v = (i,);2; € 2, recall that the symbolic slice K, is the
non-autonomous self-similar set associated with the IFS {®,; )} ;. Since there
are only finitely many choices for the ®,;,), the hypotheses of Theorem 2.6 are
automatically satisfied and

dimp K,y = hﬁm sup O (n, m)
m—00 neN

where

Z Hﬁ r/(v)(”m _
Jk

(F15eosdm)ENTL(M(i1,00n)) B

We now obtain our main formula for the pointwise Assouad dimension of arbitrary
points in Gatzouras-Lalley carpets.

Theorem 3.12. Let K be a Gatzouras—Lalley carpet. Then for every x € K with x =
7(7), there is an F' € Tan(K, x) with H*(F') 2 1 where

s = dimp 7(K) + dimp K
= dimg n(K) + lim sup O, (n,m)

m—ro0 neN

In particular,

max{dimy F': F € Tan(K,z)} > s and dima(K,z) > max{s,dimp K}

where both inequalities are equalities if x is reqular. In particular, if n(K) satisfies the
strong separation condition then equality holds for all x € K.
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Proof. By Proposition 3.7, there is an F' € Tan(K, =) so that
HdimH N(K)+dima K () (F) > 1.

Moreover, dimy K,y = lim, o0 SUP,,cry On(+) (7, m) by Theorem 2.6. The formula
for dimy (K, z), including the case when z is regular, then follows by Proposi-
tion 3.11.

If = is regular, it moreover follows from Proposition 3.6 that for any F' €
Tan (K, x), there is a similarity map h and a weak tangent ' € Tan(K(,)) so that
h(F) C n(K) x E. Since dimp n(K) = dimy n(K),

dimyg F' = dimy A(F) < dimg n(K) + dimyg F < dimpg n(K) + dima Ky

as required.
Finally, we recall that if (K) satisfies the strong separation condition, then
each z € K is regular by Lemma 3.4 (i). O

Our next goal is to prove that the set of pointwise Assouad dimensions forms an
interval. First, for i € 7", let t(i) be chosen so that

Equivalently, the function ¢ is chosen precisely so that

077(’7) (TL, m) = t(,yn-Fl) s 77n+m)-
We now have the following result.

Lemma 3.13. Let K be a Gatzouras—Lalley carpet and suppose dim;, K < o < dimp K.
Then for all ko € N sufficiently large, for all n € N there is i,, € By, C I*" satisfying

lim supt(ip41 - ingm) = @ — dimg n(K).
m—o0 neN

Proof. First, fixing any interior word j € Z* and i € 7 so that dimy K =
dimp n(K) + t(7),

dimp K = dimg n(K) + klim t(33%);
—00

and similarly for the lower dimension. Thus for all sufficiently large k, there are
words jr, ja € By, so that

dimpg n(K) +t(jr) < a < dimgn(K) +t(ja).

We inductively construct (j i, jax)se, so that, for each k € N,
1. a—dimgn(K) — 1 <t(jrx) < o —dimpgn(K),

2. o —dimgn(K) < t(jag) < dimy K + dimgn(K) + 1,
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3. jrk jak € BZO and, for k > 2, JoksJak € {ij,l, jAJg,l}*, and

4. |jL,k| Z k and |jA,k| Z k.
First, set j;1 = jr and ja1 = ja which clearly satisfy the desired properties. Now
suppose we have constructed j., , and j 4. Since t(jax) > o — dimp n(kK), for any
m € N,

7}1_{20 t(ern,ij,k) > a — dimg n(K).

Moreover, t( JTL”,C) < a — dimp n(K) and, by taking m > k sufficiently large and
applying Theorem 2.6 (ii), for all n € N sufficiently large,

< 1 1

< Fr2 kt1
Combining these two observations, there is a pair m, n so that j4x+1 = 7% % €
B;, satisfies conditions 1 and 4. The identical argument gives j .1 € Bj, satisfy-
ing 2, as claimed.

To complete the proof, since j., € B;, for all £ € N, we may identify the
sequence (jr k)7, with a sequence (i,)7°,; where i,, € By, foralln € N. It
immediately follows from 1 and 4 that

|t(j?,ka§gl) —t(37kdnr)

lim supt(ingq - inem) > a — dimgn(K).

m—00 neN
To establish the converse bound, it suffices to show for every k € N that

1
lm supt(ing1 - inem) < a —dimgn(K) + —.

m—o0 neN ]{}

By 3, forall £ € N, thereisa K € Nso that foralln > K, i, € {jrx, jax}*. For
each / € N, write ky = iggy1 - - ik (e41) and note that k, € {jr s, jar}* forall £ € N.
Thus for any n,m € N,

1 & : 1
Her Kpam) < — 2 Hkees) < o — dimp n(K) + .-
But by the property of ¢ established in Theorem 2.6 (2.3),

lim Supt(in-‘rl e in—‘rm) = lim Supt(kn—i-l e kn+m)
M—00 1 cN M= neN

which gives the claim. O
To conclude this section, we assemble the results proven in the prior two sections
to obtain our main result.

Theorem 3.14. Let K be a Gatzouras—Lalley carpet. Then for any dimg K < o <
dim A K ,

(3.9) dimp{z € K : dimy (K, z) = a} = dimyg K.
Otherwise, if o ¢ [dimp K, dimp K], then {x € K : dimy (K, z) = o} = @. However,
(3.10) HIm K (fg € K @ dima (K, z) # dima K}) = 0.
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Proof. Note that if dimp K = dimy K, then dim (K, z) = dimy K forallz € K
and the results are clearly true. Thus we may assume that dimy X' < dimg K <
dim A K.

We first establish (3.9). Let € > 0 be arbitrary and dimg K < a < dims K. Apply

Proposition 3.5 and get k£ € N and a family J C Bj, with corresponding attractor
K. satisfying dimy K — € < dimpy K. = dima K. and dimg n(K) — € < dimp n(K,).
If « < dimp K, iterating the system if necessary, by Lemma 3.13 get a sequence
(in)pe, with i,, € By for all n € N and moreover
(3.11) lim supt(ing1 - ingm) = o — dimg n(K).
If instead o = dimy K, instead simply take i,, = i} where i, € T is any word
such that dimy K = dimpn(K) + t(ig). Note that ¢(j) = dimp K, — dimp n(K,)
for any j € J. Thus by taking e to be sufficiently small, we may assume that
t(j) < a—dimgn(K) forall j € J.

Now, let (IVi,)72 , be a sequence of natural numbers satisfying limy_,o, Ni/k = oo
and write

[e.o]

Qo = [ T™ x {a1} < -+ x {ax}-

k=1

By taking each N to be sufficiently large, we may ensure that dimy 7(€y) >
dimy K. — e. Fix v € Q: it remains to verify that dima (K, (7)) = a. Since v € BY,
7(y) is a regular point of K by Lemma 3.4 (ii). By passing to the subsystem induced
by By, C Z*, write v = (k;)32, where k;, € By. Thus by Theorems 2.6 and 3.12,

dimp (K, z) = max{dimB K, h_I}l sup t(kpq1 -+ - Kpim) + dimp n(K)}.
M=% neN
Since i, - - - i,, appears as a subword of «y for arbitrarily large m, by (3.11) and since
a > dimg K, it follows that dimy (K, x) > a.

We now obtain the upper bound. Let € > 0 be arbitrary. By (3.11), there is an
ly € N so that whenever ¢ > {;,, wehave t(ij41---1j4¢) < a—dimpn(K)+e LetC
be the implicit constant from Theorem 2.6 (ii) and let m be sufficiently large so that
Cly/m < e. Since limy_, o, Ni,/k = oo, for all n sufficiently large, thereisa j € N so
that

Kot1 Kogm = J1 Jm—edjp1 - 1jqe.
Thus for m, n sufficiently large, if ¢ > ¢;, by Theorem 2.6,

g Kngm) < max{t(jr - Jm-e)s t(Lj1 - 140)}
<a—dimgn(K)+e

and similarly if ¢ < ¢, recalling that ¢(i,;;---i;1,) <1, by Theorem 2.6 recalling
the definition of C,

t(Rps1 - Kpm) < a—dimgn(K) + €.
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Therefore

lim sup lim sup t(k,, 11 -+ * kppm) < a — dimg n(K) + €

m—00 n—o0

and since ¢ > 0 was arbitrary,

lim supt(k,41 - Kpam) = limsup limsup t(k, 11+ - Kpim) < o — dimp n(K)
m—00 neN m—00 n—00
so that dimy (K, z) < «, as claimed. Of course, we recall as well that dimg K <
dima (K, z) < dimp K by Proposition 2.3.
We finally consider the points x such that dims (K, z) < dimy K. Let iy € Z be
such that dimy K = dimg n(K) + (7). Let

I = {(il,...,ijvj> GIM : (Zl,,ZM) 7& (io,...,io)}

have attractor K); C K. Since Jy is a proper subsystem, dimy K, < dimyg K
so that Himu K (K, ) = 0. Now let z € K have dim (K, z) < dims K. Suppose

o

x = m(y) where v = (i,)52,, so that

dimp (K, ) > max {dimB K,dimgn(K) + lim supt(iyi1,- .. ,in+m)} )

m—0o0 neN

Since dimy (K, z) < dimy K,

Hm sup t(ipni1y .-y inem) < t(io).
m—0o0 neN
In particular, there is a constant M so that v does not contain 7)) as a subword.
Thus x € K, for some M and therefore

WA K (£ € K dima (K, 7) < dimy K}) < Z HIm K (K ) =0
M=1

as required. O

Remark 3.15. We recall that if K is a Gatzouras-Lalley carpet, then H4™n X (K) >
0, with Himn X(K) < oo if and only if K is Ahlfors regular; see [ . In
particular, the positivity of the Hausdorff measure guarantees that the claim
(3.10) in Theorem 3.14 is not vacuous; and, if the Hausdorff measure is finite,
Theorem 3.14 is trivial.

4. TANGENT STRUCTURE AND DIMENSION OF BARANSKI CARPETS

4.1. Dimensions and decompositions of Barariski carpets. Recall the definition
of the Baranski carpet and basic notation from §3.1. Suppose K is a Baraniski carpet
and v € Q) is arbitrary. For each k € N, we define a probability vector £, () by the
rule

:#{lgﬁgk:vg:i}

2 foreachi € 7.

Er(7)i
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In other words, & () is the distribution of the letter frequencies in the first & letters
of v. We then define

_Xa (&x(7))
Pe) = )

The function I';, induces a partition 2 = Qy U Q; U Q, by

Qo ={~: li}gn inf Ty(7) <1 <limsupTx(y)}
—00

k—o0

Q= {y: limsupx(vy) < 1}
k—o00
Qo ={v:1 <liminfy(y)}.
k—ro0

We now recall the dimensional formula for a general Baranski carpet. First, we
decompose P = P; U P, where

Pj={w e P:x;(w) < xy(w)}.

Now given a measure w € P, recall | , Corollary 5.2] which states that
X (w) X, (w)

Here and for the remainder of this document, for notational simplicity, given j = 1
we write j' = 2 and given j = 2 we write j' = 1.

We also introduce some notation for symbolic slices both in the horizontal and
vertical directions. Giveny € Q2 and j € 1,2, let 6, ; be defined by the rule

n ()5 (M)
Z )g ﬁf:fjm J = 1.

(Jsesdm)Eny = (05 (01,0050n)

The value 6,,) = 0,,(,)1 was defined previously in the context of a Gatzouras-
Lalley carpet. As is the case with a Gatzouras—Lalley carpet, if we denote by
K, (v),; the non-autonomous self-similar set associated with the non-autonomous

self-similar IFS {S; ; : i € n=1(n(yx))}32,, then

dimy Ky (4),; = lim sup b, ) ;(n, m).
mM—00 neN

Assuming 7, (K) (resp. n,(K)) satisfies the SSC, then K, (,)1 (resp. K, () 2) is
precisely the intersection of K with the vertical (resp. horizontal) line containing
x = m(y). We now recall [ , Theorem 2.12] concerning the Assouad dimension
and the main result of [ ] on the Hausdorff dimensions of Barariski carpets.
While this result is not stated explicitly, the relevant details can be obtained directly
by inspecting the proof.

Proposition 4.1 ([ ; D. Let K be a Baratiski carpet such that )y # @ and
Qs # 3. Then:
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(i) Foreachj=1,2,

dlmH W(QO U Q]) S dj

where

b= s (0D | ) =)
weP; \ X (w) X (w)
In particular, dimy K = max{dy, da}.

(ii)) We have

dimy K = max {dimp n;(K) + t;}
]: b

where

and t;({) is the unique solution to the equation

i(¢
> BE=1

jen; H(0)

4.2. Pointwise Assouad dimension along uniformly contracting sequences. In
this section, we state a generalization of our results on Gatzouras-Lalley carpets
to Barariski carpets, with the caveat that we restrict our attention to points coded
by sequences which contract uniformly in one direction. The approach is similar
to the Gatzouras-Lalley case so we only include the details when the proofs
diverge. Handling more general sequences would result in a more complicated
formula for the pointwise Assouad dimension depending on the scales at which
the contraction ratio is greater in one direction than the other, which we will not
treat here.

We begin by defining the analogues of pseudo-cylinders and approximate
squares. Fix j = 1,2. Suppose i € Z" and j € n;(Z*). We then write

Pj(l’l) = {’7 = (Zn)zozl eN: (il, o ,Zk) =iand 77j(ik+1, . 7ik+l) = l}

Now let v € (2 be arbitrary and let £ € N. Let j be chosen so that 3., ; > 3, ;-
We then let Ly (y) > k be the minimal integer so that

Bty ;i < Pt
Write 71y, (,) = 1j and define the approximate square

Qr(v) = P;(1,m;(3))-

Finally, we call a pseudo-cylinder wide if P;(i, j) contains an approximate square
P;(1i,k); otherwise, we call the pseudo-cylinder tall.
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In the case when the Baranski carpet is in fact a Gatzouras-Lalley carpet, these
definitions with j = 1 coincide with the definitions in the Gatzouras-Lalley case.

Next, the collection of approximate squares forms a metric tree when equipped
with the valuation p(P;(1,7;(j))) = Bi,;7- Note that for each approximate square
@, there is a unique choice for j except precisely when 3, ; = 8,,;/, so indeed p
is well-defined.

Similarly as in the Gatzouras-Lalley case, given a pseudo-cylinder P;(i, j), we
write

Q;(1,j) = max{A : Ais a section of S relative to P;(i, j)}

where S is the collection of all approximate squares and the maximum is with
respect to the partial ordering on sections. That the maximum always exists
follows from the properties of the meet. In the case when the pseudo-cylinder is
wide, this coincides precisely with the definition in the Gatzouras-Lalley case.

However, unlike in the Gatzouras-Lalley case, we will also have to handle tall
pseudo-cylinders, which have a more complex structure. This additional structure
is handled in the following covering lemma.

Lemma4.2. (i) Let P;(i, j) be a wide pseudo-cylinder. Then

Bij i dimgp 7; (K)
By ) '

(ii) Let P;(1, j) be a tall pseudo-cylinder. Then
/B ' dimB ﬂj/(K)
ij,]

(iii) Let € > 0 be arbitrary. Suppose i € Z* and let j be chosen so that f; j» < (; ;. Let
0 <r < By, Then

Bi dimp K+e By dimg 7, (K)
#WeSW:QCM}ﬁ(IJ) .Qﬂ) |
T Bi,j,

(iv) Let € > 0 and v € ) be arbitrary. Suppose k € N and j = 1,2 are such that
Qr(y) = P;(i,]). Let A be any section of T* satisfying A < n; ' (j). Then

dimpa K, . +e
2 :ﬁ ) 15 ()3 < 1
k,7 ~EY —

keA

#0,(1.9)~ (

Proof. The proof of (i) is identical to the proof given in Lemma 3.8 and similarly
the proof of (iv) is identical to that of Lemma 3.10.

We now prove (ii). In order to do this, we must understand the structure of
the pseudo-cylinder P;(i, j). Heuristically, when (for instance) j = 1, P;(i,j) isa
union of cylinders which fall into one of two types: those which are tall, and those
which are wide. If a cylinder is tall, we apply (i) in the opposite direction to cover
it with approximate squares, and if a cylinder is wide, we group nearby cylinders
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together to form approximate squares. We then combine these counts using the
slice dimension ¢;, which is bounded above by dimg 7;/(X).
Write A = 7;'(j) and partition A = A; U A; where

Al = {k € A : Bik,j’ Z ﬁlld} al’ld ./42 = ./4\./41

First, for k € A;, note that P; (ik, @) is a wide pseudo-cylinder and we set

By = U Qj(ik, @).

keA;
By applying (i), since Siy j ~ ﬂiy,
ﬂ. ' dimp 1,/ (K)
(4.1) #B1= ) #Qy(ik2)~ ) (5—>
k€A, k€A, 3.0

Otherwise if k € Ay, let 1,(k) denote the prefix of k of maximal length so that
Biry )50 = Biyj- Writing k = 1,(k)12(k), this choice guarantees that

B(k) := P;(il1(k), n;(12(k)))
is the unique approximate square contained in [i] containing [ik|. Finally, let
Ay, ={1:(k) : k € Ay} and By = {B(k) :k € A}
We then note that, since (i1 j = (; 3. by the choice of 1, (k),

5 - dimp n;/ (K)
(4.2) #By ~ Z (ﬁf%{)
ij,J

1e A,

To conclude, observe that Q;(i, j) = B; U B; and applying (4.1) and (4.2),
#Q;(1,]) = #B1 + #B,

dimp U (K) dimp nj’ (K)
() xR
Bi 3.J Bi; J

keA; 1eA)

ﬁ‘ ) dimp 7,/ (K) W )
= i Z 51("]'/ B 77]
Bil,j

ke A1UA)

dimB Ui /(K)
< [ Bus '
ﬁil,j

where the last line follows since A; U A} < n;'(j) is a section and dimg 7,/ (K) >
tj(j) where

ti(3)
> -t

ke A1UA)
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Finally, we combine the bounds given in (i) and (ii) with a similar argument to
the proof of Lemma 3.9 to obtain (iii). Let ¢ > 0 be arbitrary and fix i € Z* and
j=0,1sothat0 < r < f; j < f; ;. Write 6 = r/B; ;s so, recalling the proof of
[ , Theorem B],

#8(9) Se (1/0) e e,

Now enumerate

S(0) ={Q1j, -, Qum, i} U{Qujr -, Qmy e}

where foreach z = j, 7 and 1 <i < m,,

Q _P(J127—zz)

for some j;. € Z* and k; . € 7.(Z*). Observe that each P.(ij;.,k; ) is a wide
pseudo-cylinder if z = j and a tall pseudo-cylinder if z = j’. Thus we may
complete the proof in the same way as Lemma 3.9, by applying (i) to the wide
pseudo-cylinders and (ii) to the tall pseudo-cylinders. O

We can now prove the following formulas for the pointwise Assouad dimension.

Proposition 4.3. Let K be a Barariski carpet. Then for each j = 1,2, if n;(K) satisfies
the SSC, for all v € Q; and x = © (),

dimy (K, z) = max{dimp K, dimg n;(K) + dima K, ;}

and
max{dimy F' : F' € Tan(K, x)} = dimp n;(K) + dima K;),(4),;-
Furthermore,
dima Ky, (1), = nll_rgo sup9 (.3 (n,m) < 4317?()%) t5(0).

Proof. 1If v € €, by definition there is a constant x € (0, 1) so that

/B'Y]kvj/ 5 s
Bl

In particular, there is a constant v’ € (0,1) so that each maximal cylinder [i]
contained in Qx(v) has 3; ;+/8:; < (k')*, which converges to zero. Thus the same
proof as given in Proposition 3.11 but instead applying Lemma 4.2 in place of the
analogous bounds for Gatzouras-Lalley carpets gives that

dima (K, 7) < max{dimg K, dimp n;(K) + dima K, (4);}-

Similarly, the same proof as Proposition 3.7 shows that

max{dimy F' : F' € Tan(K, z)} = dimp n;(K) + dimp K, (4) ;.
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Finally, using Theorem 2.6,

lim sup#,, (.i(n,m) < max t;(£).
o neg (1), ( ) < tonth) (£)

as required. O

4.3. Baranski carpets with few large tangents. In contrast to Gatzouras-Lalley
carpets, the analogue of Theorem 3.14 need not hold for Bararski carpets. We first
give a precise characterization of when a Baranski carpet has few large tangents.
Fix the definitions of ¢; and d; from Proposition 4.1.

Theorem 4.4. Let K be a Barariski carpet such that n;(K) satisfies the SSC and Q); # @
for j =1,2. Suppose foroneof j = 1,2, d; < dj and dimg n;(K)-+t; > dimp n; (K )+t;.
Then

dimp{z € K : dimy (K, z) = dimpy K} < dimy K.

Proof. Suppose d; < dy and dimp 7, (K)+t; > dimp 72 (K )+t2 (the opposite case
follows analogously). By Proposition 4.1, dimy K = dy and dima K = dimg n;(K)+
t1. In particular, by Proposition 4.3, if dima (K, z) = dima K = dimp 7 (K)+t;, then
necessarily T = 7T(’}/) where A QO U Ql. But dlmH W(QO U Ql) = d1 < dg = dlmH K,
as required. O

Remark 4.5. In the context of Theorem 4.4, one can in fact prove that the following
are equivalent:
(i) dimp{z € K : dima (K, z) = dimpy K} < dimy K.

(ii) dimp{z € K : 3F € Tan(K, z) such that dimyg F' = dim, K} < dimyg K.

(iii) Foroneof j =1,2,d; < d; and dimg n;(K) +t; > dimg n;(K) + t;.
Such a proof follows similarly to the Gatzouras-Lalley case with appropriate
modifications to restrict attention only to the family €2; or €2,. The only additional
observation required is that [ , Lemma 4.3] also holds in the Baranski case
and the uniform subsystem can be chosen so the maps are contracting strictly in
direction j and the dimension of the corresponding attractor is arbitrarily close to
d;.

In particular, if one of the above equivalent conditions hold and without loss
of generality d; > dy and dimp 71 (K) + t; < dimp 12(K) + t5, then the Hausdorff
dimension of the level set p(«) = dimy{z € K : dimy (K, z) = a} is given by the
piecewise formula

(a) = dimg K :dimg K < a < dimgn(K) + t;
7 B do cdimp n (K) + 6 < o < dimy K.

We leave the remaining details to the curious reader.

With Theorem 4.4 in hand, we can now give an explicit example of a Baranski
carpet which has few large tangents.
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Corollary 4.6. There is a Barariski carpet K such that
dimp{z € K : dima (K, z) = dimp K} < dimyg K.

Proof. Fix some ¢ € [0,1/6) and define parameters f = 1/4 — 6, a; = 1/3 — 6,
and ay = 1/6 — 6. Now define the families of maps

¢, = {(v,y) = (ux, By +ip) :i=0,...,3}
Dy, ={(z,y) = (0x + a1 + jag, By +if): j=0,1land i = 0,1}
Doy = {(2,y) — (a9z + g + ja, By +ifB) : j = 3,4and i = 2,3}

—~

and then set
(I)g = (I)Q,a U @2’b and b = (I)l @) @27a U (I)2,b~

We abuse notation and use functions and indices interchangeably. Note that ¢ is a
Baranski IFS with five columns; the carpet is conjugate to the carpet generated by
the maps depicted in Figure 2b. Note that if 6 > 0, both projected IFSs satisfy the
SSC.

We now simplify the dimensional expression in Proposition 4.1 (ii) for our
specific system. First, for w € P, setp =}, w;. Note that x;(w) = —plogay —
(1 — p)loga; and xa(w) = —log S depend only on p. But since entropy and
projected entropy are maximized uniquely by uniform vectors, defining the vector
z(p) € P by

=

Z(p)i:{Tp:iEq)1

IiE(I)Q

o3

we necessarily have

H (m(w)) N H(w) — H(m(w)) _ H(m(z(p))) N H(z(p)) — H(m(z(p)))
x1(w) X2(w) — xi(z(p) x2(2(p))
—plogp — (1 —p)log(l —p) + plog4

—plogas — (1 — p)log oy

(2—p)log2
—log 3
= D1(p)

and

H(n2(w)) N H(w) — H(p(w)) _ H(na(2(p))) N H(z(p)) — H(n2(2(p)))

X2 (w) X1 (w)  xa(z(p) x1(z(p))
_ —plogp — (1 — p)log(l — p) + plog?2 log4
—plogay — (1 —p)logay —log 8

=: Dy(p).
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Moreover, writing py = ~221=l88 5 () ¢ P, if and only if p € [0, po] and z(p) € P,

log a1 —log o’

if and only if p € [py, 1]. We thus observe that

Di(p) :0<p<npp

pe(0,1] Dy(p) po<p<1

dimg K = sup D(p) where D(p) = {

Now, a manual computation directly shows that, substituting 6 = 0,

sup Di(p) =~ 0.489536 and sup Ds(p) ~ 0.529533

pel0,1] p€(0,1]

and moreover the maximum of Dy (p) is attained at a value p; € (p, 1). Thus for all
0 sufficiently close to 0, since all the respective quantities are continuous functions
of §, there is a value ps € (po, 1) so that

dy < sup Di(p) < sup D(p) = Da(p2) = ds.
pe[O,l} p€[071]

(In fact, one can show that this is the case for all 6 € (0,1/6), but this is not required
for the proof.)

On the other hand, when 6 = 0, t; = 2 whereas ty = 1+s < 2 where s ~ 0.72263
is the unique solution to 37° + 2 - 67° = 1. Thus for all 0 sufficiently close to 0, the
conditions for Theorem 4.4 are satisfied, as required. O
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