Tangents of invariant sets

ANTTI KAENMAKI & ALEX RUTAR

ABSTRACT. We study the fine scaling properties of sets satisfying various
weak forms of invariance. For general attractors of possibly overlapping bi-
Lipschitz iterated function systems, we establish that the Assouad dimension
is given by the Hausdorff dimension of a tangent at some point in the attractor.
Under the additional assumption of self-conformality, we moreover prove
that this property holds for a subset of full Hausdorff dimension.
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1. INTRODUCTION

One of the most fundamental concepts at the intersection of analysis and geometry
is the notion of a tangent. For sets exhibiting a high degree of local regularity—
such as manifolds, or rectifiable sets—at almost every point in the set and at
all sufficiently high resolutions, the set looks essentially linear. Moreover, the
concept of a tangent is particularly relevant in the study of a much broader class
of sets: those equipped with some form of dynamical invariance. This relationship
originates in the pioneering work of Furstenberg, where one associates to a set a
certain dynamical system of “zooming in”. Especially in the past two decades,
the study of tangent measures has played an important role in the resolution of
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a number of long-standing problems concerning sets which look essentially the
same at all small scales; see, for example, | ; ; ; ; ].

In contrast, (weak) tangents also play an important role in the geometry of met-
ric spaces. One of the main dimensional quantities in the context of embeddability
properties of metric spaces is the Assouad dimension, first introduced in [ I
It turns out that the Assouad dimension, which bounds the worst-case scaling at
all locations and all small scales, is precisely the maximal Hausdorff dimension
of weak tangents, i.e. sets which are given as a limit of small pieces of enlarged
copies of the original set; see [ ]. We refer the reader to the books [ ;

; ] for more background and context on the importance of Assouad
dimension in a variety of diverse applications.

In this document, we study the interrelated concepts of tangents and Assouad
dimension, with an emphasis on sets with a weak form of dynamical invariance.
Our motivating examples include attractors of iterated function systems where
the maps are affinities (or even more generally bi-Lipschitz contractions); or the
maps are conformal and there are substantial overlaps. In both of these situations,
the sets exhibit a large amount of local inhomogeneity.

1.1. Weak tangents, tangents, and pointwise Assouad dimension. Throughout,
we will work in R? for some d € N, though many of our results hold in the broader
context of bounded doubling metric spaces. We let B(z, r) denote the closed ball
with centre x and radius 7.

Now, fix a compact set K C R”. We say that a compact set F' C B(0,1) is a
weak tangent of K C R? if there exists a sequence of similarity maps (7},)52, with
similarity ratios \; diverging to infinity such that 0 € 7;(K') and

F = lim Tx(K) N B(0,1)
k—o0

with respect to the Hausdorff metric on compact subsets of B(0, 1). We denote the
set of weak tangents of K by Tan(K'). More strongly, we say that F' is a tangent of
K at x if F'is a weak tangent and the similarity maps 7}, are homotheties which
map z to 0; i.e. T(y) = M\e(y — z). We denote the set of tangents of K at = by
Tan(K, z). We refer the reader to §2.1 for precise definitions.

Closely related to the notion of a weak tangent is the Assouad dimension of K,
which is the dimensional quantity

dimAK:inf{s:EIC>OV0<r§R<IVxGK
R s
< — .
N(B,R)NK) < (=)}

Here, for a general bounded set F', N, (F') is the smallest number of closed balls
with radius r required to cover F. It always holds that dimy K < dimg K <
dimy K, where dimy K and dimp K denote the Hausdorff and upper box dimen-
sions respectively. In some sense, the Assouad dimension is the largest reasonable
notion of dimension which can be defined using covers. Continuing the analogy
with tangents, we also introduce a localized version of the Assouad dimension
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which we call the pointwise Assouad dimension. Given x € K, we set
dimy (K, z) = inf{s 30 >03p>00<r<R<p

R\s
< — .
N(Bx, R)NK) < (=)}
The choice of p > 0 in the definition of dima (K, z) ensures a sensible form
of bi-Lipschitz invariance: if f: K — K’ is bi-Lipschitz, then dimy (K, z) =
dima (f(K), f(x)). It is immediate from the definition that

dimy (K, z) < dimy K.

Moreover, if for instance K is Ahlfors-David regular, then dimy (K, z) = dima K
for all z € K. We note here that an analogous notion of pointwise Assouad

dimension for measures was introduced recently in [ ].
An important observation which is essentially due to Furstenberg [ ;
], but was observed explicitly in [ ], is that the Assouad dimension is

characterized by weak tangents:
dima K = max{dimyg F': F' € Tan(K)}.

Motivated by this relationship, our primary goal in this document is to address
the following questions:
* Does it hold that dimy (K, z) = max{dimyg F' : F' € Tan(K,z)}?
¢ Is there necessarily an zy € K so that dimy K = dimy F' for some F' €
Tan(K, x0)? If not, is there an 2y € K so that dimy K = dimy (K, x)?
* What is the structure of the level set of pointwise Assouad dimension {z €
K :dimp (K, z) = a} for some a > 0?
In the following section, we discuss our main results and provide some preliminary
answers which indicate that answers to these questions are, in general, quite subtle.

1.2. Main result and outline of paper. We begin by stating some easy prop-
erties of the pointwise Assouad dimension for general compact sets K C R
First, some standard measurability results are stated in Proposition 2.4. Next, by
Proposition 2.2,

sup{dimg F : F € Tan(K,z)} < dima(K,z) < dimy K.

Unfortunately, in general one cannot hope for either inequality to be in equality:
an example in [ ] already has the property that K C R such that dimy K =1
but dims (K, x) = 0 for all z € K (see Example 2.8 for more detail); and moreover,
in Example 2.9, we construct a compact set K C R with a point z € K so that
dima (K, z) = 1 but each F' € Tan(K, =) consists of at most two points.

In light of the above, for general sets, the following result is essentially optimal.

Theorem A. Let K C R, Then: L
(i) If K is compact, there is an x € K such that dim (K, x) > dimp K.
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(i) If K is analytic, for any s such that H*(K) > 0, there is a compact set E C K
with H*(E) > 0 so that for each x € E, there is a tangent F' € Tan(K,x) with
HL(F) > 1.

The proof of (i) is a direct consequence of the definitions. Moreover, (ii) is almost a
consequence of the classical density theorem for Hausdorff measure. However, the
main difficulty is that Hausdorff measure and the Hausdorff metric are in general
not compatible. To work around this, we require a simple but key observation: the
density theorems also hold for Hausdorff content, and the Hausdorff content map
K — H: (K) is upper semicontinuous with respect to the Hausdorff metric on the
space of compact sets.

Actually, Theorem A has a useful consequence for general sets, which will also
play a key role in the proof of Theorem C below.

Corollary B. Let K C R be a non-empty compact set with a = dima K. Then there is
an F € Tan(K) such that HS (F') > 1.

While we cannot hope to improve Theorem A in general, many commonly
studied families of “fractal” sets have a form of dynamical invariance, which
is far from the case for general sets. As a result, it is of interest to determine
general conditions under which the Assouad dimension is actually attained as the
pointwise Assouad dimension at some point. To this end, we make the following
definition.

Definition 1.1. We say that a compact set K is self-embeddable if for each z € K
and 0 < r < diam K, there is a constant a = a(z,7) > 0 and a function f: K —
B(z,r) N K so that

(1.1) arlz —y| < |f(z) = f(y)] < a”'rlz —yl.

for all z,y € K. We say that K is uniformly self-embeddable if the constant a(z, )
can be chosen independently of z and r.

The class of self-embeddable sets is very broad and includes, for example, attrac-
tors of every possibly overlapping iterated function system { f;};cz, where Z is a
finite index set and f; is a strictly contracting bi-Lipschitz map from R? to R”.

The class of uniformly self-embeddable sets includes the attractors of finite
overlapping self-conformal iterated function systems. It is perhaps useful to
compare uniform self-embeddability with quasi self-similarity, as introduced by
Falconer [ ]. Our assumption is somewhat stronger since we also require the
upper bound to hold in (1.1). This assumption is critical to our work since, in
general, maps satisfying only the lower bound can decrease Assouad dimension.
We also note that uniform self-embeddability is the primary assumption in | ,
Theorem 2.1].

Within this general class of sets, we establish the following result which guar-
antees the existence of at least one large tangent under self-embeddability, and an
abundance of tangents under uniform self-embeddability.

Theorem C. Let K C R? be compact and self-embeddable. Then:
(i) dimp K < dimy (K, z) forall x € K.
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(ii) There is a dense set P C K such that for each x € P, there isa F' € Tan(K, z) so
that HImAK(F) > 27 dma K Ty particular,

(1.2) dimp{z € K : dima (K, z) = dimp K} = dimp K.
If K is uniformly self-embeddable, then there is a constant ¢ > 0 so that
(1.3) dimy{z € K : 3F € Tan(K, z) with H™» E(F) > ¢} = dimy K.

Theorem C can be obtained by combining Theorem 2.10, Proposition 2.11, and
Theorem 2.12. As a special case of the result for uniformly self-embeddable sets,
suppose K is the attractor of a finite self-similar IFS in the real line with Hausdortf
dimension s < 1. In this case there is a dichotomy: either #*(K) > 0, in which
case K is Ahlfors-David regular, or dimy K = 1. In particular, (1.3) cannot be
improved in general to give a set with positive Hausdorff s-measure.

Beyond being of general interest, we believe this result will be a useful technical
tool in the study of Assouad dimension for general attractors of bi-Lipschitz
invariant sets. For instance, a common technique in studying attractors of iterated
function systems is to relate the underlying geometry to symbolic properties
associated with the coding space. Upper bounding the Hausdorff dimension of
tangents is a priori easier since one may fix in advance a coding for the point. This
is the situation, for example, in [ , Theorem 5.2].

1.3. Some variants for future work. Firstly, a natural question is to what extent
the results in Theorem C can be improved. More precisely, under the general
self-embeddable assumption, can one replace packing dimension with Hausdorff
dimension in (1.2)? In subsequent work by the authors, as a consequence of a
more detailed study of the structure of tangents of a certain family of self-affine
carpets, we will give an example of a self-embeddable set for which

dimp{z € K : dima (K, z) = dimp K} < dimyg K.

Of course, one might still wonder in general if there are natural conditions which
are weaker than self-conformality under which (1.3) holds.

Secondly, we may also define a more general variant of the pointwise Assouad
dimension. Let ¢: (0,1) — (0, 1) be a fixed function. We then define the pointwise
¢p-Assouad dimension, given by

dim$ (K, z) = inf{s :3C >0V0<r<1
N,ito0r) (B(x, )N K) < Cr‘¢(r)5}.
It is a straightforward to see that

. . log N,116(r) (B(ZE,T)OK)
dim? K,z) =limsu .
AU 2) =l = g (1)
The ¢-Assouad dimensions are an example of dimension interpolation [ ]and
have been studied in detail in [ ; ]. In the specific case that ¢(R) =
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5—1forsome 6§ € (0, 1), this corresponds precisely to the Assouad spectrum [ ]
which (abusing notation) we may denote by dim% (K, ). In general, we expect the
properties of the pointwise Assouad spectrum to be substantially different than
the properties of the pointwise Assouad dimension.

Thirdly, one might also consider the dual notion of the pointwise lower dimension,
defined for z € K by

dimy, (K, ) :sup{s :3C >0 >0V0<r<R<p

N,(B(z,R) N K) > c(%)}

It is established in [ ] that the lower dimension may be analogously charac-
terized as the minimum of Hausdorff dimensions of weak tangents. Therefore, a
natural question is to ask if similar results hold for the pointwise lower dimension
as well. However, the proofs we have given for Theorem C do not immediately
translate to the case of the lower dimension since overlaps may increase dimension.

Finally, we note that an analogous notion for the pointwise Assouad dimen-
sion of measures was recently introduced in [ ]. It would be interesting to
investigate the relationship between these two notions of pointwise dimension.

1.4. Notation. Throughout, we work in R? equipped with the usual Euclidean
metric. Write Ry = (0, 00). Given functions f and g, we say that f < g if thereis a
constant C' > 0 so that f(z) < Cg(z) for all z in the domain of f and g. We write

f=giffSgandyg S f.
2. TANGENTS AND POINTWISE ASSOUAD DIMENSION
2.1. Tangents and weak tangents. To begin this section, we precisely define the
notions of tangent and weak tangent, and establish the fundamental relationship
between the dimensions of tangents and the pointwise Assouad dimension.
Given a set £ C R? and § > 0, we denote the open §-neighbourhood of E by
E® = {z e R?: 3y € Fsuch that |z — y| < §}.

Now given a non-empty subset X C R?, we let K(X) denote the set of non-empty
compact subsets of X equipped with the Hausdorff metric

dy (K1, K2) = max{py(K1; K2), pu(K2; K1)}
where
pu(Ki; Ky) = inf{6 > 0: K; ¢ K\,
If X is compact, then (K(X), dy,) is a compact metric space itself. We also write

dist(Ey, Bs) = inf{|x —y| : x € E1,y € Ey}
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for non-empty sets E;, Ey C R

We say that a set F' € K(B(0,1)) is a weak tangent of K C R” if there exists
a sequence of similarity maps (7})52, with 0 € T(K) and similarity ratios A
diverging to infinity such that

F = lim T(K) N B(0, 1)
k—o0

in £(B(0, 1)). We denote the set of weak tangents of K by Tan(K). A key feature
of the Assouad dimension is that it is characterized by Hausdorff dimensions of
weak tangents. This result is explicitly stated in [ , Proposition 5.7]. We refer
the reader to [ , Section 5.1] for more discussion on the context and history of
this result.

Proposition 2.1 ([ ; D. We have
o = dimp K = max dimygF.
FeTan(K)

Moreover, the maximizing weak tangent F' can be chosen so that H*(F') > 0.

In a similar flavour, we say that F' is a tangent of K at + € K if there exists a
sequence of similarity ratios ()72, diverging to infinity such that

F = lim \(K —2)N B(0,1)
k—o0
in £(B(0,1)). We denote the set of tangents of K at x by Tan(K, x).

Of course, Tan(K,z) C Tan(K). Unlike in the case for weak tangents, we
require the similarities in the construction of the tangent to in fact be homotheties.
This choice is natural since, for example, a function f: R — R is differentiable at
x if and only if the set of tangents of the graph of f at (x, f(x)) is the singleton
{B(0,1) N ¢} for some non-vertical line ¢ passing through the origin. In prac-
tice, compactness of the group of orthogonal transformations in R? means this
restriction will not cause any technical difficulties.

We observe that upper box dimensions of tangents provide a lower bound for
the pointwise Assouad dimension.

Proposition 2.2. For any compact set K C R? and x € K, dima (K, ) > dimg F for
any F € Tan(K, ).

_ Proof. Let o > dima (K, z) and suppose F' € Tan(K,z): we will show that
dimp F' < a. First, get C' > 0 such that foreach0 <r < R < 1,

N,(B(z,R) N K) < C(%)a.

Let 0 > 0 be arbitrary, and get a similarity 7" with similarity ratio A such that
T(z) =0and

dy(T(K) N B(0,1), F) < 6.



8 ANTTI KAENMAKI & ALEX RUTAR

Then there is a uniform constant M > 0 so that

M - N5(F) < N5s(T(K) N B(0,1)) = Nsx(K 0 B(, ) < C(%)a — o5,

In other words, dimg F' < a. O

One should not expect equality to hold in general: in Example 2.9, we construct
an example of a compact set X' C R and a point € K so that dim (K, z) = 1 but
every F' € Tan(K, x) consists of at most 2 points.

2.2. Level sets and measurability. We now make some observations concerning
the multifractal properties of the function z — dima (K, z). In particular, we are
interested in the following quantities:

AK,a) ={z € K : dimp (K, z) = o} and () = dimyg A(K, a).

We use the convention that dimy @ = —oo. Observe that ¢ is a bi-Lipschitz
invariant.

Let IC(R?) denote the family of compact subsets of R?, equipped with the
Hausdorff distance dy. We recall that B(z,r) denotes the closed ball at = with
radius r, and we let B°(x,r) denote the open ball at x with radius r. Given a
compact set K C R?, we let N°(K) denote the minimal number of open sets with
diameter r required to cover K, and NP**(K) denote the size of a maximal centred
packing of K by closed balls with radius 7. Then, for 0 < r; < ry, we write

Ny (K x) = N2 (B(2,79) N K)

Nop o (K, ) = NPK(B®(z,m5) N K)
The following lemma is standard.

Lemma 2.3. Fix 0 < r; < ry. Then:
(i) N° - K(RY) x R = [0, d] is lower semicontinuous.

T1,72 "

(ii) Ny, K(RY) x RY — [0, d] is upper semicontinuous.

We can use this lemma to establish the following fundamental measurability
results.

Proposition 2.4. The following measurability properties hold:
(i) For a fixed compact set K and t > 0, the set {x : dima (K, x) > s} isa Gy set.
(ii) The function (K, x) — dimy (K, ) is Baire class 2.
(iii) A(K, «) is Borel for any compact set K.

Proof. Since R” is doubling,
dima (K, z) = inf{s :3C>03IM eNVM <k<n

Nyen g (K, ) < 02<"*’f>s}.
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Equivalently, we may use N;?

1,72

in place of \V,, ,,. In particular,

{(K,z) : dimp (K, x) >s}—ﬂm UU o-n k) (2P o)

C=1M=1k=M n=k

isa G set. Thus {z : dims (K, x) > s} is also a Gs set, so

{z :dimy(K,z) >t} = ﬂ{m cdima (K, x) >t —1/n}

n=1

is also a G set, as claimed in (i).
Moreover,

{(K,z):dimps (K, x) < t} = U U ﬂ ﬂNQan (—o0, C2=h),

CeQN(0,00) M=1 k=M n=k

Thus {(K, z) : dimp (K, z) € (s,t)} is a Gs,-set, i.e. it is a countable union of sets
expressible as a countable intersection of open sets, so dim, is Baire class 2.

Of course, the same argument also show that z — dima (£, x) is Baire class 2
for a fixed compact set K, so that A(K, «) is G, and, in particular, Borel. d

2.3. Tangents and pointwise dimensions of general sets. We now establish
some general results on the existence of tangents for general sets. These results
will also play an important technical role in the following sections: for many
of our applications, it is not enough to have positive Hausdorff a-measure for
a = dimy K, since in general Hausdorff a-measure does not interact well with the
Hausdorff metric on K(B(0,1)).

Recall that the Hausdorff a-content of a set E is given by

HY (E) = inf {Z(diam v)*: Ec| U, U open} .
i=1 i=1

Of course, HS (E) < H*(E) and HL (E) = 0 if and only if H*(E) = 0. We recall
(see, e.g. [ , Theorem 2.1]) that H<, is upper semicontinuous on K(B(0, 1)).
Moreover, if 0 < H*(E) < oo, then the density theorem for Hausdorff content
implies that H“-almost every x € E has a tangent with uniformly large Hausdorff
a-content. We use these ideas in the following proofs.

We begin with a straightforward preliminary lemma which is proven, for
example, in [ , Lemma 3.11].

Lemma 2.5. Let K C R” be compact. Then Tan(Tan(K)) C Tan(K).

Proof. First suppose E € Tan(K) and F' € Tan(E). Write £ = lim,,_,, T,,(K) N
B(0,1) and F' = lim,,_,~, S, (£) N B(0, 1) for some sequences of similarities (7},) and
(S,,) with similarity ratios diverging to infinity. For each € > 0, let N be sufficiently
large so that

dy(Sx(E) N B(0,1), F) <

DO ™
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Suppose Sy has similarity ratio Ay, and let M be sufficiently large so that

€

2AN
It follows that
dH(SN o) TM(K) N B(O, 1), F) S €.
But € > 0 was arbitrary, as required. 0

Now, given a set with positive and finite Hausdorff measure, we can always
find a tangent with large Hausdorff content.

Lemma 2.6. Let K C R? be a compact set with 0 < H(K) < co. Then for H*-almost
every x € K, thereis an F' € Tan(K, x) such that HS (F') > 1.

Proof. By the same proof as [ , Theorem 6.2], for H*-almost every = € K,
there is a sequence of scales (7,,)72; converging to zero such that

1 < lim r,*HS (B(z,r,) N K).

n—oo

Then
HE (1 (€ = )1 BO.1) = M2 (Bl ) 1) 22 1.

n

But Hausdorff a-content is upper semicontinuous, so passing to a subsequence if
necessary,

F = lim (r, (K — 2) N B(0,1))

n—o0

satisfies H2 (F') > 1. O

Of course, we can combine the previous two results to obtain the following im-
provement of Proposition 2.1.

Restatement (of Corollary B). Let K be a compact set with dimy K = o. Then there
is a weak tangent F' € Tan(K) with H (F) > 1.

Proof. By Proposition 2.1, there is E' € Tan(K') such that #*(E) > 0. By [ ,
Theorem 4.10], there is a compact £’ C E such that 0 < H*(E’) < oco. Then
by Lemma 2.6, there is F' € Tan(£’) with HL (F') > 1. But F’ C F for some
F € Tan(F), and by Lemma 2.5, F' € Tan(K) with HS (F) > HL(F') > 1. O

We now establish bounds on the pointwise Assouad dimension and tangents
for general sets.

Restatement (of Theorem A). Let K C R%. Then:
(i) If K is analytic, for any s such that H*(K) > 0, there is a compact set E C K
with H*(E) > 0 so that for each x € E, there is a tangent F' € Tan(K,x) with
e (F) > 1.
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(i) If K is compact, there is an = € K such that dima (K, z) > dimp K.

Proof. The proof of (i) follows directly from Lemma 2.6, recalling that we can
always find a compact subset £ C K such that 0 < H*(E) < oo (combine [ ,
Theorem 8.19] and | , Corollary B.2.4]).

We now see (ii). Let dimp K = t. We first observe that for any r > 0, there is an
z € K so that dimg B(z,r) N K = t. In particular, we may inductively construct a
nested sequence of balls B(xy, ) with limy_,, 7, = 0 so that dimg KNB(zy, 1) =t
for all £ € N. Since K is compact, take v = limy .z, € K. We verify that
dimy (K, z) > t. Let C > 0 and p > 0 be arbitrary. Since the z;, converge to x and
the r;, converge to 0, get some k so that B(xy, ;) C B(z, p). Thus for all e > 0 and

r > 0 sufficiently small depending on € and p, since dimp K N B(xy, 1) = t,

N,(B(z,p) N K) > N,(Bzy, 1) N K) > C (i—’“)t

Thus dima (K, z) > t. O

Remark 2.7. Note that compactness is essential in Theorem A (ii) since there are
sets with dimg K = 1 but every point is isolated: consider, for instance, the set
E ={(logn)™':n =2,3,...}. In this case, E = E U {0} and dim, (E,0) = 1. This
example also shows that (ii) can hold with exactly 1 point.

Finally, we construct some general examples which go some way to showing
that the results for general sets given in this section are sharp.

Example 2.8. In general, the Assouad dimension can only be characterized by

weak tangents rather than by tangents. For example, consider the set K from
[ , Example 2.20], defined by

K={0yu{2*+u":keNre{01,...,k}}

Since K contains arithmetic progressions of length k for all £ € N, dimy K =
1. However, dimy (K, z) = 0 for all z € K and, therefore, by Proposition 2.2,
dimp F =0 forall F' € Tan(K,z) and z € K.

Example 2.9. We give an example of a compact set K and a point z € K so that
dima (K, x) = 1 but each F' € Tan(K, z) consists of at most finitely many points.

Set a;, = 4~* and observe that kayy1/ar < 1/k. For each k € N, write (;, =
|2 /k | and set

>~ ok — 0, 2h—yp —1
K:{O}UU{CLk ok , Qg ok ,...,ak}
k=1

and consider the point x = 0. First observe for all ¢ > 0 and all & sufficiently small
depending on ¢,

U,

NQ—k,ak (B(O, ak) N K) > E > o(1=e)k

which gives that dimy (K,0) = 1.
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On the other hand, for & € N,
a,' K N B(0,1) C [0, aps1/ax] U[1/k,1].

Since kayi1/ar < 1/k, it follows that for any A > 1 and AK N B(0,1) can be
contained in a union of two intervals with arbitrarily small length as A diverges to
oo. Thus any tangent I’ € Tan(/, 0) consists of at most 2 points.

2.4. Tangents of dynamically invariant sets. We recall from Example 2.8 and
Example 2.9 that the Assouad dimension of K need not be attained as the Assouad
dimension of a point, and even the Assouad dimension at a point need not be
attained as the upper box dimension of a tangent at that point.

Now recall the definition of self-embeddability from Definition 1.1. For self-
embeddable sets, we can prove directly that the Assouad dimension of K is
attained as the Hausdorff dimension of a tangent. In fact, the tangent can be
chosen to have positive H“-measure for o = dimy K.

Theorem 2.10. Let K C R be compact and self-embeddable with o = dimy K. Then
there is a dense set of points x € K for which there exist F' € Tan(K,x) such that
HE(F) > 27 In particular,

dimp{z € K : dimy (K, z) = dimpy K} = dimp K.

Proof. We first note that it suffices to construct a single point = such that
HE(F) > 27“. By self-embeddability and since dimy (K, z) = dima (f(K), f(x))
for a bi-Lipschitz map f, this immediately yields a dense subset of such points.
Moreover, recalling Proposition 2.4 (i), since dimy (K, z) < dimy K forall z € K,
{r € K : dimy(K,z) = dimy K} is a dense G; subset of K and therefore has
packing dimension equal to the packing dimension of K (see, for instance, [ ,
Proposition 2.9]).

It therefore remains to construct such a point. Begin with an arbitrary ball
B(xy,m) with z; € K and 0 < r; < 1. Since K is self-embeddable, get a bi-
Lipschitz map f;: K — K N B(xy,r;). Since dimy f1(K) = «, by Corollary B there
is a weak tangent F; of f;(K) such that HS (F1) > 1. Since F} is a weak tangent of
f1(K), there is a similarity 7} with similarity ratio A\; > 1 such that 0 € 7} (K’) and

dy (Ty(f1(K)) N B(0,1), Fy) < 1.

Then choose z, € K and r, < 1/2 so that B(xy,75) C T, ' B°(0,1).

Repeating the above construction, next with the ball B(z5, ), and iterating,
we obtain a sequence of similarity maps (7},)2, each with similarity ratio A, > n,
bi-Lipschitz maps f,, and compact sets F}, such that

L T,.,B(0,1) C T, B(0,1),

2. dH(Tn(fn(K)) N B(0,1), Fn) <
3. HE(F,) > 1.

,and

S|
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Let z = lim,,, 7, '(0) and note by 1 that x € 7,, ' B(0,1) for all n € N. Let h,, be a
similarity with similarity ratio 1/2 such that

d?—l <%(fn(K) - l’) N B(O> 1)vhn(Fn>> < %

Observe that H2 (h,(F,)) > 2-“. Thus passing to a subsequence if necessary, since
fn(K) C K, we may set
. .

Fy = lim —(fu(K)—2)N B(0,1) and F = lim —(K —2)nB(0,1),
and observe that Fi, C F'. Again passing to a subsequence if necessary, by compact-
ness of the orthogonal group, 2 and the triangle inequality, there is an isometry
h so that lim,,_,. h o h,(F,,) = F,. Thus by upper semicontinuity of Hausdorff
content,

He(F) =2 M (Fo) = lim HE (o hy(F)) =27¢
n—oo
as required. O

We recall from Theorem A (ii) that, for a general compact set K, the upper box
dimension of K provides a lower bound for the pointwise Assouad dimension at
some point. For self-embeddable sets, we observe that the upper box dimension
provides a uniform lower bound for the pointwise Assouad dimension at every
point. On the other hand, the upper box dimension does not lower bound the
maximal dimension of a tangent.

Proposition 2.11. Let K C R? be self-embeddable. Then for any v € K, we have
dimy (K, z) > dimp K.

Proof. Fix a < dimg K and z € K. Let C > 0 and p > 0 be arbitrary. Since
K is self-embeddable, there is some bi-Lipschitz map f: K — B(z,p) so that
f(K) C K. Since dimp f(K) > «, there is some 0 < r < p so that

Nu(B(z,p) N K) = N,(F(K) = ¢(2)".

r

Since C' > 0 and p > 0 were arbitrary, dimy (K, z) > a, as required. O

Now assuming uniform self-embeddability, we will see that the set of points
with tangents that have positive H“-measure has full Hausdorff dimension for
a = dimy K. Since uniformly self-embeddable sets satisfy the hypotheses of [ ,
Theorem 4], it always holds that dimg K = dimyg K (see also [ , Theorem 2.10]).
On the other hand, it can happen in this class of sets that dimg K < «: for example,
this is the situation for self-similar sets in R with dimg K < 1 which fail the weak
separation condition; see [ , Theorem 1.3]. We provide a subset of full
Hausdorff dimension for which each point has a tangent with positive Hausdorff
a-measure.
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The idea of the proof is essentially as follows. Let I’ be a weak tangent for
K with strictly positive Hausdorff a-content. For each s < dimg K, using the
implicit method of [ , Theorem 4], we can construct a well-distributed set of
N balls at resolution §, where 6—° < N. Then, inside each ball, using uniform self-
embeddability, we can map an image of an approximate tangent 7;; ' (B(0, 1))NK ~
F where T} has similarity ratio A\. Choosing NN to be large, the resulting collection of
images of the approximate tangent F' is again a family of well-distributed balls at
resolution A~'9, with (A\716)~* ~ N. Repeating this construction along a sequence
of tangents converging to F' yields a set E with dimyg £ > s such thateachz € E/
has a tangent which is an image of F' (up to some negligible distortion), which has
positive Hausdorff a-content by upper semicontinuity of content.

We fix a compact set K. To simplify notation, we say that a function f: K — K
isin G(z,r,c) for z € K and ¢,r > 0if f(K) C B(z,r)and

erle —y| < [f(@) = fy)l < ¢z —y]
forall z,y € K.
Theorem 2.12. Let K C R? be uniformly self-embeddable and let o = dimp K. Then

dimg{r € K : 3F € Tan(K, x) with H% (F) 2 1} = dimyg K = dimg K.

Proof. Write o = dimp K. If dimp K = 0 we are done; otherwise, let 0 < s <
dimp K be arbitrary. Since K is uniformly self-embeddable, there is a constant
a € (0,1) so that for each z € K and 0 < r < diam K thereisamap f € G(z,1,a).
Next, from Corollary B, there is a compact set ' C B(0,1) with H% (F') > 1 and a
sequence of similarities (7})5>; with similarity ratios (A;)%2, such that

F = lim T(K) N B(0,1)
k—o0
with respect to the Hausdorff metric. Set Q5. = T}, ' (B(0, 1)) N K. We will construct
a Cantor set £ C K of points each of which has pointwise Assouad dimension at
least o and has dimyg F > s.

We begin with a preliminary construction. First, since s < dimp K, there is
some 7 > 0 and a collection of points {;}°, C K such that |y; — y;| > 3r, for
all i # j and Ny > 2°a~*r;°. Now for each i, take a map ¢; € G(y;,r9,a). Write
Z=A{1,...,No},and for i = (iy,...,1,) € Z" set

61 =iy 000 i,

and, having fixed some z, € K, write z; = ¢;(z¢) € ¢:(K). Observe that if the
maximal length of a common prefix of i and j is m, then

dist(¢: (K), ¢5(K)) > ro(ary)™.

We now begin our inductive construction. Without loss of generality, we may
assume that \,, > 12 forall n € Nand ry < 1. First, for each n € N, define constants
(my)s2; € {0} UNand (p,)s2, converging monotonically to zero from above by
the rules
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2, y—1
1 o-mn < a“roA,

2. po = diam K, anld

3. pn = pp-1- a)\—n ;ar(]) .
Next, for n € NU{0} we inductively choose points y,; € K and maps V¥, ; €
G(Ynis pn,a) for i € I™ x --- x I™. Let @ denote the empty word and let
Yoo € K be arbitrary and let ¥y, , denote the identity map. Then for each k = ij
withi € I™ x --- x I™ 1 and j € ™", sequentially choose:

4. Yoy € G(V,_11(x5), pnrnat, a)

5. Ynx = 77Z)n,k o Tgl(o)

6- \Ijn,k S g(yn,ka pn; CL)
Finally, write 7y = {@}, J, =Z™ x --- x I™" for n € N, and let

E,= | B(ynss,3pn) and  E=Kn ﬁ E,.

i€Jn n=1

Suppose i € J,—1and j € ™. Since z; € K, V,,_1 ;(K) C B(Yn-1,1, Pn—1), and
Un,ij € Un13(K) C B(¥,_11(z5), pn), we conclude since p,_1 > 3p,, that

B(yn,ij7 3Pﬂ> C B(yn—l,ia ?)pn—l)'

Moreover, Ynij € K, so the sets E,, are non-empty nested compact sets and
therefore E is non-empty.

We next observe the following fundamental separation properties of the balls
in the construction of the sets E,,. Let n € N and suppose j; # j2 in 2" and
i € Jn-1 (writing Jy = {@}). Suppose j; and j, have a common prefix of maximal
length m. First recall that |z, — z;,| > r¢(arg)™, so that

(W15 (25,) = Wno5(25,)] = paor(are)™ .
Then, since for j = 1,2

Pn—l(aro)mn)

ymijj S f(ﬁn’ijj(K) C B(\Iln—l,i($jj>7 3

we observe that

m+1

)m+1 _ 2Pn—1(a7’0)m" > pn-1(aro)
3 3
Since we assumed that \,, > 12, by the triangle inequality

|yn,ij1 - yn,ij2| > Pn—l(m’o

pr—1(are)™*! pn-1(aro

3 6

We first show that dimy £ > s. By the method of repeated subdivision, define
a Borel probability measure p with supp 4 = E and for i € 7,

)m+1

(2.1) dist (B(yn,ij1>3pn)7B(yn,ij273pn>) > — 6pp >

1

(B (Yn,i,3pn) N K) = 27
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Now suppose U is an arbitrary open set with U N £/ # @. Intending to use the
mass distribution principle, we estimate y(U). Assuming that U has sufficiently
small diameter, let n € N be maximal so that

a”t\, Pn—1(arg)™
Pn=""¢6

By (2.1), there is a unique i € 7, such that U N B(y, 1, 3p,) # &. We first recall by
choice of the constants m,, that

diam U <

= (diamK)-(CLBrO) AL 1., /\_1(ar0)m1+"'+m"

> (diam K)2~(mtdma)(gpgymit-tmn,

There are two cases. First assume p,,/6 < diam U. Thus

1 1 s(mi+-4mn) . _
w(U) § < ( am) < (diam K)"*p;,

2
<
- <d1am K) (diam U7)"
Otherwise, let k € {0,...,m, 1 — 1} be so that
k+1 k
—Pn(ago) < diamU < pn(égo) :

By (2.1), U intersects at most Ng"”*k balls B(yn+1.w, 3pn+1) for w € J,11, so since
2—sk < 1’

1
:U“(U) < w < (diam K>_sz . (2_8(a7“0)5)k
n Vg

s k41,
< () (")

< (LY : (diam U)S.

argdiam K

This treats all possible small values of diam U, so there is a constant M > 0 such
that u(U) < M(diam U)®. Thus dimy £ > s by the mass distribution principle.
Now fix

C=@B+a?™"

We will show that each z € E has a tangent with Hausdorff a-content at least C.
Let z € E and define

xr —Z
p(B+a?)

Our tangent will be an accumulation point of the sequence (.S,,(KX) N B(0,1))72,
Now fix n € N. Since z € E, there is some w € [, so that z € B(y,,3pn). By
choice of 4, ., Qn = B(¢nw<yn ©): Ant) N K so that

’on

Sp(z) =

Unw(Qn) € B(Ynw, pna ) NK C B(z,pu(3+a72)) N K
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and therefore, writing ®,, = S, o ¢, , 0 T, !,
P, (T, (K)NB(0,1)) C S,(K)N B(0,1).

Then for z,y € T,,(K) N B(0, 1), by the choice of 1 in (4),

|z — y| lz —y|
22 <D, (z) — D, (y) < ——— I
(2.2) - < | @y () ()] 2G5 0D

Now, passing to a subsequence (ny)32,, we can ensure that

klirn , (F) =2 and klim Sn(K)NB(0,1) = Z.
Moreover, recall that limy,_,, 7),, (K) N B(0,1) = F and HZ (F) > 1. Observe by
(2.2) that H% (P, (F)) > C for each k, so by upper semicontinuity of Hausdorff
content, HS (Zy) > C. But again by (2.2),

dy (F, T,,(K) N B(0,1))

dH (Z07 (I)nk (Tnk(K) N B<Oa 1))) < dH(ZO? (I)nk(F)) + a2(3 + a—2)

soin fact Zy C Z and HZ (Z) > C, as claimed. O

Remark 2.13. We note that the upper distortion bound in the definition of uni-
form self-embeddability is used only at the very last step to guarantee that the
images ®,,, (T, (K)NB(0,1)) converge to a large set whenever the 7,,, (K)N B(0, 1)
converge to a large set.
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