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ABSTRACT. We study the fine scaling properties of sets satisfying various
weak forms of invariance. For general attractors of possibly overlapping bi-
Lipschitz iterated function systems, we establish that the Assouad dimension
is given by the Hausdorff dimension of a tangent at some point in the attractor.
Under the additional assumption of self-conformality, we moreover prove
that this property holds for a subset of full Hausdorff dimension.
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1. INTRODUCTION

One of the most fundamental concepts at the intersection of analysis and geometry
is the notion of a tangent. For sets exhibiting a high degree of local regularity—
such as manifolds, or rectifiable sets—at almost every point in the set and at
all sufficiently high resolutions, the set looks essentially linear. Moreover, the
concept of a tangent is particularly relevant in the study of a much broader class
of sets: those equipped with some form of dynamical invariance. This relationship
originates in the pioneering work of Furstenberg, where one associates to a set a
certain dynamical system of “zooming in”. Especially in the past two decades,
the study of tangent measures has played an important role in the resolution of
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a number of long-standing problems concerning sets which look essentially the
same at all small scales; see, for example, [HS12; HS15; KSS15; Shm19; Wu19].

In contrast, (weak) tangents also play an important role in the geometry of met-
ric spaces. One of the main dimensional quantities in the context of embeddability
properties of metric spaces is the Assouad dimension, first introduced in [Ass77].
It turns out that the Assouad dimension, which bounds the worst-case scaling at
all locations and all small scales, is precisely the maximal Hausdorff dimension
of weak tangents, i.e. sets which are given as a limit of small pieces of enlarged
copies of the original set; see [KOR17]. We refer the reader to the books [Fra20;
MT10; Rob11] for more background and context on the importance of Assouad
dimension in a variety of diverse applications.

In this document, we study the interrelated concepts of tangents and Assouad
dimension, with an emphasis on sets with a weak form of dynamical invariance.
Our motivating examples include attractors of iterated function systems where
the maps are affinities (or even more generally bi-Lipschitz contractions); or the
maps are conformal and there are substantial overlaps. In both of these situations,
the sets exhibit a large amount of local inhomogeneity.

1.1. Weak tangents, tangents, and pointwise Assouad dimension. Throughout,
we will work in Rd for some d ∈ N, though many of our results hold in the broader
context of bounded doubling metric spaces. We let B(x, r) denote the closed ball
with centre x and radius r.

Now, fix a compact set K ⊂ Rd. We say that a compact set F ⊂ B(0, 1) is a
weak tangent of K ⊂ Rd if there exists a sequence of similarity maps (Tk)∞k=1 with
similarity ratios λk diverging to infinity such that 0 ∈ Tk(K) and

F = lim
k→∞

Tk(K) ∩B(0, 1)

with respect to the Hausdorff metric on compact subsets of B(0, 1). We denote the
set of weak tangents of K by Tan(K). More strongly, we say that F is a tangent of
K at x if F is a weak tangent and the similarity maps Tk are homotheties which
map x to 0; i.e. Tk(y) = λk(y − x). We denote the set of tangents of K at x by
Tan(K, x). We refer the reader to §2.1 for precise definitions.

Closely related to the notion of a weak tangent is the Assouad dimension of K,
which is the dimensional quantity

dimAK = inf
{
s : ∃C > 0∀0 < r ≤ R < 1∀x ∈ K

Nr(B(x,R) ∩K) ≤ C
(R
r

)s}
.

Here, for a general bounded set F , Nr(F ) is the smallest number of closed balls
with radius r required to cover F . It always holds that dimHK ≤ dimBK ≤
dimAK, where dimHK and dimBK denote the Hausdorff and upper box dimen-
sions respectively. In some sense, the Assouad dimension is the largest reasonable
notion of dimension which can be defined using covers. Continuing the analogy
with tangents, we also introduce a localized version of the Assouad dimension
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which we call the pointwise Assouad dimension. Given x ∈ K, we set

dimA(K, x) = inf
{
s : ∃C > 0∃ρ > 0∀0 < r ≤ R < ρ

Nr(B(x,R) ∩K) ≤ C
(R
r

)s}
.

The choice of ρ > 0 in the definition of dimA(K, x) ensures a sensible form
of bi-Lipschitz invariance: if f : K → K ′ is bi-Lipschitz, then dimA(K, x) =
dimA(f(K), f(x)). It is immediate from the definition that

dimA(K, x) ≤ dimAK.

Moreover, if for instance K is Ahlfors–David regular, then dimA(K, x) = dimAK
for all x ∈ K. We note here that an analogous notion of pointwise Assouad
dimension for measures was introduced recently in [Ant22].

An important observation which is essentially due to Furstenberg [Fur70;
Fur08], but was observed explicitly in [KOR17], is that the Assouad dimension is
characterized by weak tangents:

dimAK = max{dimH F : F ∈ Tan(K)}.

Motivated by this relationship, our primary goal in this document is to address
the following questions:

• Does it hold that dimA(K, x) = max{dimH F : F ∈ Tan(K, x)}?
• Is there necessarily an x0 ∈ K so that dimAK = dimH F for some F ∈

Tan(K, x0)? If not, is there an x0 ∈ K so that dimAK = dimA(K, x0)?
• What is the structure of the level set of pointwise Assouad dimension {x ∈
K : dimA(K, x) = α} for some α ≥ 0?

In the following section, we discuss our main results and provide some preliminary
answers which indicate that answers to these questions are, in general, quite subtle.

1.2. Main result and outline of paper. We begin by stating some easy prop-
erties of the pointwise Assouad dimension for general compact sets K ⊂ Rd.
First, some standard measurability results are stated in Proposition 2.4. Next, by
Proposition 2.2,

sup{dimB F : F ∈ Tan(K, x)} ≤ dimA(K, x) ≤ dimAK.

Unfortunately, in general one cannot hope for either inequality to be in equality:
an example in [LR15] already has the property that K ⊂ R such that dimAK = 1
but dimA(K, x) = 0 for all x ∈ K (see Example 2.8 for more detail); and moreover,
in Example 2.9, we construct a compact set K ⊂ R with a point x ∈ K so that
dimA(K, x) = 1 but each F ∈ Tan(K, x) consists of at most two points.

In light of the above, for general sets, the following result is essentially optimal.

Theorem A. Let K ⊂ Rd. Then:
(i) If K is compact, there is an x ∈ K such that dimA(K, x) ≥ dimBK.
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(ii) If K is analytic, for any s such that Hs(K) > 0, there is a compact set E ⊂ K
with Hs(E) > 0 so that for each x ∈ E, there is a tangent F ∈ Tan(K, x) with
Hs

∞(F ) ≥ 1.

The proof of (i) is a direct consequence of the definitions. Moreover, (ii) is almost a
consequence of the classical density theorem for Hausdorff measure. However, the
main difficulty is that Hausdorff measure and the Hausdorff metric are in general
not compatible. To work around this, we require a simple but key observation: the
density theorems also hold for Hausdorff content, and the Hausdorff content map
K 7→ Hs

∞(K) is upper semicontinuous with respect to the Hausdorff metric on the
space of compact sets.

Actually, Theorem A has a useful consequence for general sets, which will also
play a key role in the proof of Theorem C below.

Corollary B. Let K ⊆ Rd be a non-empty compact set with α = dimAK. Then there is
an F ∈ Tan(K) such that Hα

∞(F ) ≥ 1.

While we cannot hope to improve Theorem A in general, many commonly
studied families of “fractal” sets have a form of dynamical invariance, which
is far from the case for general sets. As a result, it is of interest to determine
general conditions under which the Assouad dimension is actually attained as the
pointwise Assouad dimension at some point. To this end, we make the following
definition.

Definition 1.1. We say that a compact set K is self-embeddable if for each z ∈ K
and 0 < r ≤ diamK, there is a constant a = a(z, r) > 0 and a function f : K →
B(z, r) ∩K so that

(1.1) ar|x− y| ≤ |f(x)− f(y)| ≤ a−1r|x− y|.

for all x, y ∈ K. We say that K is uniformly self-embeddable if the constant a(z, r)
can be chosen independently of z and r.

The class of self-embeddable sets is very broad and includes, for example, attrac-
tors of every possibly overlapping iterated function system {fi}i∈I , where I is a
finite index set and fi is a strictly contracting bi-Lipschitz map from Rd to Rd.

The class of uniformly self-embeddable sets includes the attractors of finite
overlapping self-conformal iterated function systems. It is perhaps useful to
compare uniform self-embeddability with quasi self-similarity, as introduced by
Falconer [Fal89]. Our assumption is somewhat stronger since we also require the
upper bound to hold in (1.1). This assumption is critical to our work since, in
general, maps satisfying only the lower bound can decrease Assouad dimension.
We also note that uniform self-embeddability is the primary assumption in [AKT20,
Theorem 2.1].

Within this general class of sets, we establish the following result which guar-
antees the existence of at least one large tangent under self-embeddability, and an
abundance of tangents under uniform self-embeddability.

Theorem C. Let K ⊂ Rd be compact and self-embeddable. Then:
(i) dimBK ≤ dimA(K, x) for all x ∈ K.
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(ii) There is a dense set P ⊂ K such that for each x ∈ P , there is a F ∈ Tan(K, x) so
that HdimA K(F ) ≥ 2− dimA K . In particular,

(1.2) dimP{x ∈ K : dimA(K, x) = dimAK} = dimPK.

If K is uniformly self-embeddable, then there is a constant c > 0 so that

(1.3) dimH{x ∈ K : ∃F ∈ Tan(K, x) with HdimA K(F ) ≥ c} = dimHK.

Theorem C can be obtained by combining Theorem 2.10, Proposition 2.11, and
Theorem 2.12. As a special case of the result for uniformly self-embeddable sets,
suppose K is the attractor of a finite self-similar IFS in the real line with Hausdorff
dimension s < 1. In this case there is a dichotomy: either Hs(K) > 0, in which
case K is Ahlfors–David regular, or dimAK = 1. In particular, (1.3) cannot be
improved in general to give a set with positive Hausdorff s-measure.

Beyond being of general interest, we believe this result will be a useful technical
tool in the study of Assouad dimension for general attractors of bi-Lipschitz
invariant sets. For instance, a common technique in studying attractors of iterated
function systems is to relate the underlying geometry to symbolic properties
associated with the coding space. Upper bounding the Hausdorff dimension of
tangents is a priori easier since one may fix in advance a coding for the point. This
is the situation, for example, in [BKR21, Theorem 5.2].

1.3. Some variants for future work. Firstly, a natural question is to what extent
the results in Theorem C can be improved. More precisely, under the general
self-embeddable assumption, can one replace packing dimension with Hausdorff
dimension in (1.2)? In subsequent work by the authors, as a consequence of a
more detailed study of the structure of tangents of a certain family of self-affine
carpets, we will give an example of a self-embeddable set for which

dimH{x ∈ K : dimA(K, x) = dimAK} < dimHK.

Of course, one might still wonder in general if there are natural conditions which
are weaker than self-conformality under which (1.3) holds.

Secondly, we may also define a more general variant of the pointwise Assouad
dimension. Let ϕ : (0, 1) → (0, 1) be a fixed function. We then define the pointwise
ϕ-Assouad dimension, given by

dimϕ
A(K, x) = inf

{
s : ∃C > 0∀0 < r < 1

Nr1+ϕ(r)

(
B(x, r) ∩K

)
≤ Cr−ϕ(r)s

}
.

It is a straightforward to see that

dimϕ
A(K, x) = lim sup

r→0

logNr1+ϕ(r)

(
B(x, r) ∩K

)
ϕ(r) log(1/r)

.

The ϕ-Assouad dimensions are an example of dimension interpolation [Fra21] and
have been studied in detail in [BRT23+; GHM21]. In the specific case that ϕ(R) =
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1
θ
−1 for some θ ∈ (0, 1), this corresponds precisely to the Assouad spectrum [FY18]

which (abusing notation) we may denote by dimθ
A(K, x). In general, we expect the

properties of the pointwise Assouad spectrum to be substantially different than
the properties of the pointwise Assouad dimension.

Thirdly, one might also consider the dual notion of the pointwise lower dimension,
defined for x ∈ K by

dimL(K, x) = sup
{
s : ∃C > 0∃ρ > 0 ∀0 < r ≤ R < ρ

Nr(B(x,R) ∩K) ≥ C
(R
r

)s}
.

It is established in [FHK+19] that the lower dimension may be analogously charac-
terized as the minimum of Hausdorff dimensions of weak tangents. Therefore, a
natural question is to ask if similar results hold for the pointwise lower dimension
as well. However, the proofs we have given for Theorem C do not immediately
translate to the case of the lower dimension since overlaps may increase dimension.

Finally, we note that an analogous notion for the pointwise Assouad dimen-
sion of measures was recently introduced in [Ant22]. It would be interesting to
investigate the relationship between these two notions of pointwise dimension.

1.4. Notation. Throughout, we work in Rd equipped with the usual Euclidean
metric. Write R+ = (0,∞). Given functions f and g, we say that f ≲ g if there is a
constant C > 0 so that f(x) ≤ Cg(x) for all x in the domain of f and g. We write
f ≈ g if f ≲ g and g ≲ f .

2. TANGENTS AND POINTWISE ASSOUAD DIMENSION

2.1. Tangents and weak tangents. To begin this section, we precisely define the
notions of tangent and weak tangent, and establish the fundamental relationship
between the dimensions of tangents and the pointwise Assouad dimension.

Given a set E ⊂ Rd and δ > 0, we denote the open δ-neighbourhood of E by

E(δ) = {x ∈ Rd : ∃y ∈ E such that |x− y| < δ}.

Now given a non-empty subset X ⊂ Rd, we let K(X) denote the set of non-empty
compact subsets of X equipped with the Hausdorff metric

dH(K1, K2) = max{pH(K1;K2), pH(K2;K1)}

where

pH(K1;K2) = inf{δ > 0 : K1 ⊂ K
(δ)
2 }.

If X is compact, then (K(X), dH) is a compact metric space itself. We also write

dist(E1, E2) = inf{|x− y| : x ∈ E1, y ∈ E2}
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for non-empty sets E1, E2 ⊂ Rd.
We say that a set F ∈ K(B(0, 1)) is a weak tangent of K ⊂ Rd if there exists

a sequence of similarity maps (Tk)
∞
k=1 with 0 ∈ Tk(K) and similarity ratios λk

diverging to infinity such that

F = lim
k→∞

Tk(K) ∩B(0, 1)

in K(B(0, 1)). We denote the set of weak tangents of K by Tan(K). A key feature
of the Assouad dimension is that it is characterized by Hausdorff dimensions of
weak tangents. This result is explicitly stated in [KOR17, Proposition 5.7]. We refer
the reader to [Fra20, Section 5.1] for more discussion on the context and history of
this result.

Proposition 2.1 ([Fur08; KOR17]). We have

α := dimAK = max
F∈Tan(K)

dimH F.

Moreover, the maximizing weak tangent F can be chosen so that Hα(F ) > 0.

In a similar flavour, we say that F is a tangent of K at x ∈ K if there exists a
sequence of similarity ratios (λk)∞k=1 diverging to infinity such that

F = lim
k→∞

λk(K − x) ∩B(0, 1)

in K(B(0, 1)). We denote the set of tangents of K at x by Tan(K, x).
Of course, Tan(K, x) ⊂ Tan(K). Unlike in the case for weak tangents, we

require the similarities in the construction of the tangent to in fact be homotheties.
This choice is natural since, for example, a function f : R → R is differentiable at
x if and only if the set of tangents of the graph of f at (x, f(x)) is the singleton
{B(0, 1) ∩ ℓ} for some non-vertical line ℓ passing through the origin. In prac-
tice, compactness of the group of orthogonal transformations in Rd means this
restriction will not cause any technical difficulties.

We observe that upper box dimensions of tangents provide a lower bound for
the pointwise Assouad dimension.

Proposition 2.2. For any compact set K ⊂ Rd and x ∈ K, dimA(K, x) ≥ dimB F for
any F ∈ Tan(K, x).

Proof. Let α > dimA(K, x) and suppose F ∈ Tan(K, x): we will show that
dimB F ≤ α. First, get C > 0 such that for each 0 < r ≤ R < 1,

Nr(B(x,R) ∩K) ≤ C
(R
r

)α

.

Let δ > 0 be arbitrary, and get a similarity T with similarity ratio λ such that
T (x) = 0 and

dH(T (K) ∩B(0, 1), F ) ≤ δ.
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Then there is a uniform constant M > 0 so that

M ·Nδ(F ) ≤ Nδ(T (K) ∩B(0, 1)) = Nδλ(K ∩B(x, λ)) ≤ C
( λ

δλ

)α

= Cδ−α.

In other words, dimB F ≤ α. □

One should not expect equality to hold in general: in Example 2.9, we construct
an example of a compact set K ⊂ R and a point x ∈ K so that dimA(K, x) = 1 but
every F ∈ Tan(K, x) consists of at most 2 points.

2.2. Level sets and measurability. We now make some observations concerning
the multifractal properties of the function x 7→ dimA(K, x). In particular, we are
interested in the following quantities:

A(K,α) = {x ∈ K : dimA(K, x) = α} and φ(α) = dimH A(K,α).

We use the convention that dimH ∅ = −∞. Observe that φ is a bi-Lipschitz
invariant.

Let K(Rd) denote the family of compact subsets of Rd, equipped with the
Hausdorff distance dH. We recall that B(x, r) denotes the closed ball at x with
radius r, and we let B◦(x, r) denote the open ball at x with radius r. Given a
compact set K ⊂ Rd, we let N◦

r (K) denote the minimal number of open sets with
diameter r required to cover K, and Npack

r (K) denote the size of a maximal centred
packing of K by closed balls with radius r. Then, for 0 < r1 ≤ r2, we write

N ◦
r1,r2

(K, x) = N◦
r1
(B(x, r2) ∩K)

Nr1,r2(K, x) = Npack
r1

(B◦(x, r2) ∩K)

The following lemma is standard.

Lemma 2.3. Fix 0 < r1 ≤ r2. Then:
(i) N ◦

r1,r2
: K(Rd)× Rd → [0, d] is lower semicontinuous.

(ii) Nr1,r2 : K(Rd)× Rd → [0, d] is upper semicontinuous.

We can use this lemma to establish the following fundamental measurability
results.

Proposition 2.4. The following measurability properties hold:
(i) For a fixed compact set K and t ≥ 0, the set {x : dimA(K, x) ≥ s} is a Gδ set.

(ii) The function (K, x) 7→ dimA(K, x) is Baire class 2.
(iii) A(K,α) is Borel for any compact set K.

Proof. Since Rd is doubling,

dimA(K, x) = inf
{
s : ∃C > 0 ∃M ∈ N ∀M ≤ k ≤ n

N2−n,2−k(K, x) ≤ C2(n−k)s
}
.
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Equivalently, we may use N ◦
r1,r2

in place of Nr1,r2 . In particular,

{(K, x) : dimA(K, x) > s} =
∞⋂

C=1

∞⋂
M=1

∞⋃
k=M

∞⋃
n=k

(N ◦
2−n,2−k)

−1(C2(n−k)s,∞)

is a Gδ set. Thus {x : dimA(K, x) > s} is also a Gδ set, so

{x : dimA(K, x) ≥ t} =
∞⋂
n=1

{x : dimA(K, x) > t− 1/n}

is also a Gδ set, as claimed in (i).
Moreover,

{(K, x) : dimA(K, x) < t} =
⋃

C∈Q∩(0,∞)

∞⋃
M=1

∞⋂
k=M

∞⋂
n=k

(N2−n,2−k)−1(−∞, C2(n−k)t).

Thus {(K, x) : dimA(K, x) ∈ (s, t)} is a Gδσ-set, i.e. it is a countable union of sets
expressible as a countable intersection of open sets, so dimA is Baire class 2.

Of course, the same argument also show that x 7→ dimA(K, x) is Baire class 2
for a fixed compact set K, so that A(K,α) is Gδσ and, in particular, Borel. □

2.3. Tangents and pointwise dimensions of general sets. We now establish
some general results on the existence of tangents for general sets. These results
will also play an important technical role in the following sections: for many
of our applications, it is not enough to have positive Hausdorff α-measure for
α = dimAK, since in general Hausdorff α-measure does not interact well with the
Hausdorff metric on K

(
B(0, 1)

)
.

Recall that the Hausdorff α-content of a set E is given by

Hα
∞(E) = inf

{
∞∑
i=1

(diamUi)
α : E ⊂

∞⋃
i=1

Ui, Ui open

}
.

Of course, Hα
∞(E) ≤ Hα(E) and Hα

∞(E) = 0 if and only if Hα(E) = 0. We recall
(see, e.g. [MM97, Theorem 2.1]) that Hα

∞ is upper semicontinuous on K(B(0, 1)).
Moreover, if 0 < Hα(E) < ∞, then the density theorem for Hausdorff content
implies that Hα-almost every x ∈ E has a tangent with uniformly large Hausdorff
α-content. We use these ideas in the following proofs.

We begin with a straightforward preliminary lemma which is proven, for
example, in [KR16, Lemma 3.11].

Lemma 2.5. Let K ⊂ Rd be compact. Then Tan(Tan(K)) ⊂ Tan(K).

Proof. First suppose E ∈ Tan(K) and F ∈ Tan(E). Write E = limn→∞ Tn(K) ∩
B(0, 1) and F = limn→∞ Sn(E)∩B(0, 1) for some sequences of similarities (Tn) and
(Sn) with similarity ratios diverging to infinity. For each ϵ > 0, let N be sufficiently
large so that

dH(SN(E) ∩B(0, 1), F ) ≤ ϵ

2
.



10 ANTTI KÄENMÄKI & ALEX RUTAR

Suppose SN has similarity ratio λN , and let M be sufficiently large so that

dH(TM(K) ∩B(0, 1), E) ≤ ϵ

2λN
.

It follows that

dH(SN ◦ TM(K) ∩B(0, 1), F ) ≤ ϵ.

But ϵ > 0 was arbitrary, as required. □

Now, given a set with positive and finite Hausdorff measure, we can always
find a tangent with large Hausdorff content.

Lemma 2.6. Let K ⊆ Rd be a compact set with 0 < Hα(K) <∞. Then for Hα-almost
every x ∈ K, there is an F ∈ Tan(K, x) such that Hα

∞(F ) ≥ 1.

Proof. By the same proof as [Mat95, Theorem 6.2], for Hα-almost every x ∈ K,
there is a sequence of scales (rn)∞n=1 converging to zero such that

1 ≤ lim
n→∞

r−α
n Hα

∞
(
B(x, rn) ∩K

)
.

Then

Hα
∞
(
r−1
n (K − x) ∩B(0, 1)

)
= r−α

n Hα
∞
(
B(x, rn) ∩K

) n→∞−−−→ 1.

But Hausdorff α-content is upper semicontinuous, so passing to a subsequence if
necessary,

F = lim
n→∞

(
r−1
n (K − x) ∩B(0, 1)

)
satisfies Hα

∞(F ) ≥ 1. □

Of course, we can combine the previous two results to obtain the following im-
provement of Proposition 2.1.

Restatement (of Corollary B). Let K be a compact set with dimAK = α. Then there
is a weak tangent F ∈ Tan(K) with Hα

∞(F ) ≥ 1.

Proof. By Proposition 2.1, there is E ∈ Tan(K) such that Hα(E) > 0. By [Fal90,
Theorem 4.10], there is a compact E ′ ⊂ E such that 0 < Hα(E ′) < ∞. Then
by Lemma 2.6, there is F ′ ∈ Tan(E ′) with Hα

∞(F ′) ≥ 1. But F ′ ⊂ F for some
F ∈ Tan(E), and by Lemma 2.5, F ∈ Tan(K) with Hα

∞(F ) ≥ Hα
∞(F ′) ≥ 1. □

We now establish bounds on the pointwise Assouad dimension and tangents
for general sets.

Restatement (of Theorem A). Let K ⊂ Rd. Then:
(i) If K is analytic, for any s such that Hs(K) > 0, there is a compact set E ⊂ K

with Hs(E) > 0 so that for each x ∈ E, there is a tangent F ∈ Tan(K, x) with
Hs

∞(F ) ≥ 1.
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(ii) If K is compact, there is an x ∈ K such that dimA(K, x) ≥ dimBK.

Proof. The proof of (i) follows directly from Lemma 2.6, recalling that we can
always find a compact subset E ⊂ K such that 0 < Hs(E) <∞ (combine [Mat95,
Theorem 8.19] and [BP17, Corollary B.2.4]).

We now see (ii). Let dimBK = t. We first observe that for any r > 0, there is an
x ∈ K so that dimBB(x, r) ∩K = t. In particular, we may inductively construct a
nested sequence of ballsB(xk, rk) with limk→∞ rk = 0 so that dimBK∩B(xk, rk) = t
for all k ∈ N. Since K is compact, take x = limk→∞ xk ∈ K. We verify that
dimA(K, x) ≥ t. Let C > 0 and ρ > 0 be arbitrary. Since the xk converge to x and
the rk converge to 0, get some k so that B(xk, rk) ⊂ B(x, ρ). Thus for all ϵ > 0 and
r > 0 sufficiently small depending on ϵ and ρ, since dimBK ∩B(xk, rk) = t,

Nr

(
B(x, ρ) ∩K

)
≥ Nr

(
B(xk, rk) ∩K

)
≥ C

(rk
r

)t−ϵ

.

Thus dimA(K, x) ≥ t. □

Remark 2.7. Note that compactness is essential in Theorem A (ii) since there are
sets with dimBK = 1 but every point is isolated: consider, for instance, the set
E = {(log n)−1 : n = 2, 3, . . .}. In this case, E = E ∪ {0} and dimA(E, 0) = 1. This
example also shows that (ii) can hold with exactly 1 point.

Finally, we construct some general examples which go some way to showing
that the results for general sets given in this section are sharp.

Example 2.8. In general, the Assouad dimension can only be characterized by
weak tangents rather than by tangents. For example, consider the set K from
[LR15, Example 2.20], defined by

K = {0} ∪
{
2−k + ℓ4−k : k ∈ N, ℓ ∈ {0, 1, . . . , k}

}
Since K contains arithmetic progressions of length k for all k ∈ N, dimAK =
1. However, dimA(K, x) = 0 for all x ∈ K and, therefore, by Proposition 2.2,
dimH F = 0 for all F ∈ Tan(K, x) and x ∈ K.

Example 2.9. We give an example of a compact set K and a point x ∈ K so that
dimA(K, x) = 1 but each F ∈ Tan(K, x) consists of at most finitely many points.

Set ak = 4−k2 and observe that kak+1/ak ≤ 1/k. For each k ∈ N, write ℓk =
⌊2k/k⌋ and set

K = {0} ∪
∞⋃
k=1

{
ak

2k − ℓk
2k

, ak
2k − ℓk − 1

2k
, . . . , ak

}
and consider the point x = 0. First observe for all ϵ > 0 and all k sufficiently small
depending on ϵ,

N2−k·ak
(
B(0, ak) ∩K

)
≥ ℓk

2
≥ 2(1−ϵ)k

which gives that dimA(K, 0) = 1.
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On the other hand, for k ∈ N,

a−1
k K ∩B(0, 1) ⊂ [0, ak+1/ak] ∪ [1/k, 1].

Since kak+1/ak ≤ 1/k, it follows that for any λ ≥ 1 and λK ∩ B(0, 1) can be
contained in a union of two intervals with arbitrarily small length as λ diverges to
∞. Thus any tangent F ∈ Tan(K, 0) consists of at most 2 points.

2.4. Tangents of dynamically invariant sets. We recall from Example 2.8 and
Example 2.9 that the Assouad dimension of K need not be attained as the Assouad
dimension of a point, and even the Assouad dimension at a point need not be
attained as the upper box dimension of a tangent at that point.

Now recall the definition of self-embeddability from Definition 1.1. For self-
embeddable sets, we can prove directly that the Assouad dimension of K is
attained as the Hausdorff dimension of a tangent. In fact, the tangent can be
chosen to have positive Hα-measure for α = dimAK.

Theorem 2.10. Let K ⊆ Rd be compact and self-embeddable with α = dimAK. Then
there is a dense set of points x ∈ K for which there exist F ∈ Tan(K, x) such that
Hα

∞(F ) ≥ 2−α. In particular,

dimP{x ∈ K : dimA(K, x) = dimAK} = dimPK.

Proof. We first note that it suffices to construct a single point x such that
Hα

∞(F ) ≥ 2−α. By self-embeddability and since dimA(K, x) = dimA(f(K), f(x))
for a bi-Lipschitz map f , this immediately yields a dense subset of such points.
Moreover, recalling Proposition 2.4 (i), since dimA(K, x) ≤ dimAK for all x ∈ K,
{x ∈ K : dimA(K, x) = dimAK} is a dense Gδ subset of K and therefore has
packing dimension equal to the packing dimension of K (see, for instance, [Fal14,
Proposition 2.9]).

It therefore remains to construct such a point. Begin with an arbitrary ball
B(x1, r1) with x1 ∈ K and 0 < r1 ≤ 1. Since K is self-embeddable, get a bi-
Lipschitz map f1 : K → K ∩B(x1, r1). Since dimA f1(K) = α, by Corollary B there
is a weak tangent F1 of f1(K) such that Hα

∞(F1) ≥ 1. Since F1 is a weak tangent of
f1(K), there is a similarity T1 with similarity ratio λ1 ≥ 1 such that 0 ∈ T1(K) and

dH
(
T1(f1(K)) ∩B(0, 1), F1

)
≤ 1.

Then choose x2 ∈ K and r2 ≤ 1/2 so that B(x2, r2) ⊂ T−1
1 B◦(0, 1).

Repeating the above construction, next with the ball B(x2, r2), and iterating,
we obtain a sequence of similarity maps (Tn)∞n=1 each with similarity ratio λn ≥ n,
bi-Lipschitz maps fn, and compact sets Fn such that

1. T−1
n+1B(0, 1) ⊆ T−1

n B(0, 1),

2. dH
(
Tn(fn(K)) ∩B(0, 1), Fn

)
≤ 1

n
, and

3. Hα
∞(Fn) ≥ 1.
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Let x = limn→∞ T−1
n (0) and note by 1 that x ∈ T−1

n B(0, 1) for all n ∈ N. Let hn be a
similarity with similarity ratio 1/2 such that

dH

(λn
2
(fn(K)− x) ∩B(0, 1), hn(Fn)

)
≤ 1

n
.

Observe that Hα
∞(hn(Fn)) ≥ 2−α. Thus passing to a subsequence if necessary, since

fn(K) ⊆ K, we may set

F0 = lim
n→∞

λn
2
(fn(K)− x) ∩B(0, 1) and F = lim

n→∞

λn
2
(K − x) ∩B(0, 1),

and observe that F0 ⊆ F . Again passing to a subsequence if necessary, by compact-
ness of the orthogonal group, 2 and the triangle inequality, there is an isometry
h so that limn→∞ h ◦ hn(Fn) = F0. Thus by upper semicontinuity of Hausdorff
content,

Hα
∞(F ) ≥ Hα

∞(F0) ≥ lim
n→∞

Hα
∞(h ◦ hn(Fn)) = 2−α

as required. □

We recall from Theorem A (ii) that, for a general compact set K, the upper box
dimension of K provides a lower bound for the pointwise Assouad dimension at
some point. For self-embeddable sets, we observe that the upper box dimension
provides a uniform lower bound for the pointwise Assouad dimension at every
point. On the other hand, the upper box dimension does not lower bound the
maximal dimension of a tangent.

Proposition 2.11. Let K ⊆ Rd be self-embeddable. Then for any x ∈ K, we have
dimA(K, x) ≥ dimBK.

Proof. Fix α < dimBK and x ∈ K. Let C > 0 and ρ > 0 be arbitrary. Since
K is self-embeddable, there is some bi-Lipschitz map f : K → B(x, ρ) so that
f(K) ⊆ K. Since dimB f(K) > α, there is some 0 < r ≤ ρ so that

Nr(B(x, ρ) ∩K) ≥ Nr(f(K)) ≥ C
(ρ
r

)α

.

Since C > 0 and ρ > 0 were arbitrary, dimA(K, x) ≥ α, as required. □

Now assuming uniform self-embeddability, we will see that the set of points
with tangents that have positive Hα-measure has full Hausdorff dimension for
α = dimAK. Since uniformly self-embeddable sets satisfy the hypotheses of [Fal89,
Theorem 4], it always holds that dimBK = dimHK (see also [Fra14, Theorem 2.10]).
On the other hand, it can happen in this class of sets that dimBK < α: for example,
this is the situation for self-similar sets in R with dimBK < 1 which fail the weak
separation condition; see [FHO+15, Theorem 1.3]. We provide a subset of full
Hausdorff dimension for which each point has a tangent with positive Hausdorff
α-measure.
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The idea of the proof is essentially as follows. Let F be a weak tangent for
K with strictly positive Hausdorff α-content. For each s < dimBK, using the
implicit method of [Fal89, Theorem 4], we can construct a well-distributed set of
N balls at resolution δ, where δ−s ≪ N . Then, inside each ball, using uniform self-
embeddability, we can map an image of an approximate tangent T−1

δ (B(0, 1))∩K ≈
F where Tδ has similarity ratio λ. ChoosingN to be large, the resulting collection of
images of the approximate tangent F is again a family of well-distributed balls at
resolution λ−1δ, with (λ−1δ)−s ≈ N . Repeating this construction along a sequence
of tangents converging to F yields a set E with dimHE ≥ s such that each x ∈ E
has a tangent which is an image of F (up to some negligible distortion), which has
positive Hausdorff α-content by upper semicontinuity of content.

We fix a compact set K. To simplify notation, we say that a function f : K → K
is in G(z, r, c) for z ∈ K and c, r > 0 if f(K) ⊂ B(z, r) and

cr|x− y| ≤ |f(x)− f(y)| ≤ c−1r|x− y|

for all x, y ∈ K.

Theorem 2.12. Let K ⊂ Rd be uniformly self-embeddable and let α = dimAK. Then

dimH{x ∈ K : ∃F ∈ Tan(K, x) with Hα
∞(F ) ≳ 1} = dimHK = dimBK.

Proof. Write α = dimAK. If dimBK = 0 we are done; otherwise, let 0 < s <
dimBK be arbitrary. Since K is uniformly self-embeddable, there is a constant
a ∈ (0, 1) so that for each z ∈ K and 0 < r ≤ diamK there is a map f ∈ G(z, r, a).
Next, from Corollary B, there is a compact set F ⊂ B(0, 1) with Hα

∞(F ) ≥ 1 and a
sequence of similarities (Tk)∞k=1 with similarity ratios (λk)∞k=1 such that

F = lim
k→∞

Tk(K) ∩B(0, 1)

with respect to the Hausdorff metric. Set Qk = T−1
k (B(0, 1))∩K. We will construct

a Cantor set E ⊂ K of points each of which has pointwise Assouad dimension at
least α and has dimHE ≥ s.

We begin with a preliminary construction. First, since s < dimBK, there is
some r0 > 0 and a collection of points {yi}N0

i=1 ⊂ K such that |yi − yj| > 3r0 for
all i ̸= j and N0 ≥ 2sa−sr−s

0 . Now for each i, take a map ϕi ∈ G(yi, r0, a). Write
I = {1, . . . , N0}, and for i = (i1, . . . , in) ∈ In set

ϕi = ϕi1 ◦ · · · ◦ ϕin ,

and, having fixed some x0 ∈ K, write xi = ϕi(x0) ∈ ϕi(K). Observe that if the
maximal length of a common prefix of i and j is m, then

dist(ϕi(K), ϕj(K)) ≥ r0(ar0)
m.

We now begin our inductive construction. Without loss of generality, we may
assume that λn ≥ 12 for all n ∈ N and r0 ≤ 1. First, for each n ∈ N, define constants
(mn)

∞
n=1 ⊂ {0} ∪ N and (ρn)

∞
n=1 converging monotonically to zero from above by

the rules
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1. 2−mn ≤ a2r0λ
−1
n

3
,

2. ρ0 = diamK, and

3. ρn := ρn−1 ·
aλ−1

n · (ar0)mn

3
.

Next, for n ∈ N∪{0} we inductively choose points yn,i ∈ K and maps Ψn,i ∈
G(yn,i, ρn, a) for i ∈ Im1 × · · · × Imn . Let ∅ denote the empty word and let
y0,∅ ∈ K be arbitrary and let Ψ0,∅ denote the identity map. Then for each k = ij

with i ∈ Im1 × · · · × Imn−1 and j ∈ Imn , sequentially choose:
4. ψn,k ∈ G(Ψn−1,i(xj), ρnλna

−1, a)
5. yn,k = ψn,k ◦ T−1

n (0)
6. Ψn,k ∈ G(yn,k, ρn, a)

Finally, write J0 = {∅}, Jn = Im1 × · · · × Imn for n ∈ N, and let

En =
⋃
i∈Jn

B(yn,ij, 3ρn) and E = K ∩
∞⋂
n=1

En.

Suppose i ∈ Jn−1 and j ∈ Imn . Since xj ∈ K, Ψn−1,i(K) ⊂ B(yn−1,i, ρn−1), and
yn,ij ∈ ψn,ij(K) ⊂ B(Ψn−1,i(xj), ρn), we conclude since ρn−1 ≥ 3ρn that

B(yn,ij, 3ρn) ⊂ B(yn−1,i, 3ρn−1).

Moreover, yn,ij ∈ K, so the sets En are non-empty nested compact sets and
therefore E is non-empty.

We next observe the following fundamental separation properties of the balls
in the construction of the sets En. Let n ∈ N and suppose j1 ̸= j2 in Imn and
i ∈ Jn−1 (writing J0 = {∅}). Suppose j1 and j2 have a common prefix of maximal
length m. First recall that |xj1 − xj2| ≥ r0(ar0)

m, so that

|Ψn−1,i(xj1)−Ψn−1,i(xj2)| ≥ ρn−1(ar0)
m+1.

Then, since for j = 1, 2

yn,ijj ∈ ψn,ijj(K) ⊂ B
(
Ψn−1,i(xjj),

ρn−1(ar0)
mn

3

)
we observe that

|yn,ij1 − yn,ij2| ≥ ρn−1(ar0)
m+1 − 2

ρn−1(ar0)
mn

3
≥ ρn−1(ar0)

m+1

3
.

Since we assumed that λn ≥ 12, by the triangle inequality

(2.1) dist
(
B(yn,ij1 , 3ρn), B(yn,ij2 , 3ρn)

)
≥ ρn−1(ar0)

m+1

3
− 6ρn ≥ ρn−1(ar0)

m+1

6
.

We first show that dimHE ≥ s. By the method of repeated subdivision, define
a Borel probability measure µ with suppµ = E and for i ∈ Jn,

µ(B(yn,i, 3ρn) ∩K) =
1

#Jn

.
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Now suppose U is an arbitrary open set with U ∩ E ̸= ∅. Intending to use the
mass distribution principle, we estimate µ(U). Assuming that U has sufficiently
small diameter, let n ∈ N be maximal so that

diamU ≤ a−1λn
2

ρn =
ρn−1(ar0)

mn

6
.

By (2.1), there is a unique i ∈ Jn such that U ∩B(yn,i, 3ρn) ̸= ∅. We first recall by
choice of the constants mn that

ρn = (diamK) ·
(a2r0

3

)n

λ−1
1 · · ·λ−1

n (ar0)
m1+···+mn

≥ (diamK)2−(m1+···+mn)(ar0)
m1+···+mn .

There are two cases. First assume ρn/6 < diamU . Thus

µ(U) ≤ 1

#Jn

≤
(1
2
ar0

)s(m1+···+mn)

≤ (diamK)−sρsn

≤
( 6

diamK

)s

· (diamU)s.

Otherwise, let k ∈ {0, . . . ,mn+1 − 1} be so that

ρn(ar0)
k+1

6
< diamU ≤ ρn(ar0)

k

6
.

By (2.1), U intersects at most Nmn−k
0 balls B(yn+1,ω, 3ρn+1) for ω ∈ Jn+1, so since

2−sk ≤ 1,

µ(U) ≤ 1

#Jn ·Nk
0

≤ (diamK)−sρsn · (2−s(ar0)
s)k

≤
( 6

ar0 diamK

)s

·
(ρn(ar0)k+1

6

)s

≤
( 6

ar0 diamK

)s

·
(
diamU

)s
.

This treats all possible small values of diamU , so there is a constant M > 0 such
that µ(U) ≤M(diamU)s. Thus dimHE ≥ s by the mass distribution principle.

Now fix

C = (3 + a−2)−α.

We will show that each z ∈ E has a tangent with Hausdorff α-content at least C.
Let z ∈ E and define

Sn(x) =
x− z

ρn(3 + a−2)
.

Our tangent will be an accumulation point of the sequence (Sn(K) ∩B(0, 1))∞n=1.
Now fix n ∈ N. Since z ∈ E, there is some ω ∈ Jn so that z ∈ B(yn,ω, 3ρn). By
choice of yn,ω, Qn = B

(
ψ−1
n,ω(yn,ω), λ

−1
n

)
∩K so that

ψn,ω(Qn) ⊆ B
(
yn,ω, ρna

−2
)
∩K ⊆ B

(
z, ρn(3 + a−2)

)
∩K
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and therefore, writing Φn = Sn ◦ ψn,ω ◦ T−1
n ,

Φn(Tn(K) ∩B(0, 1)) ⊂ Sn(K) ∩B(0, 1).

Then for x, y ∈ Tn(K) ∩B(0, 1), by the choice of ψ in (4),

(2.2)
|x− y|
3 + a−2

≤ |Φn(x)− Φn(y)| ≤
|x− y|

a2(3 + a−2)
.

Now, passing to a subsequence (nk)
∞
k=1, we can ensure that

lim
k→∞

Φnk
(F ) = Z0 and lim

k→∞
Snk

(K) ∩B(0, 1) = Z.

Moreover, recall that limk→∞ Tnk
(K) ∩ B(0, 1) = F and Hα

∞(F ) ≥ 1. Observe by
(2.2) that Hα

∞(Φnk
(F )) ≥ C for each k, so by upper semicontinuity of Hausdorff

content, Hα
∞(Z0) ≥ C. But again by (2.2),

dH
(
Z0,Φnk

(Tnk
(K) ∩B(0, 1))

)
≤ dH(Z0,Φnk

(F )) +
dH

(
F, Tnk

(K) ∩B(0, 1)
)

a2(3 + a−2)

so in fact Z0 ⊂ Z and Hα
∞(Z) ≥ C, as claimed. □

Remark 2.13. We note that the upper distortion bound in the definition of uni-
form self-embeddability is used only at the very last step to guarantee that the
images Φnk

(Tnk
(K)∩B(0, 1)) converge to a large set whenever the Tnk

(K)∩B(0, 1)
converge to a large set.
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