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ABSTRACT. For any given set E ⊂ [1, 2], we discuss a fractal frequency-
localized version of the Lp local smoothing estimates for the half-wave prop-
agator with times in E. A conjecture is formulated in terms of a quantity
involving the Assouad spectrum of E and the Legendre transform. We val-
idate the conjecture for radial functions. We also prove a similar result for
fractal-time L2 → Lq and square function bounds, for arbitrary L2 functions
and general time sets. We formulate a conjecture for Lp → Lq generalizations.

1. INTRODUCTION

Consider the half-wave propagator

eit
√
−∆f(x) =

1

(2π)d

∫
Rd

f̂(ξ)ei⟨x,ξ⟩+it|ξ| dξ, x ∈ Rd, t > 0,

initially defined for Schwartz functions f , where f̂(ξ) =
∫
Rd f(y)e

−i⟨y,ξ⟩dy denotes
the Fourier transform. It is well-known since the work of Miyachi [Miy80] and
Peral [Per79] that for fixed time t > 0 and 2 ≤ p < ∞, there exists a locally
bounded constant Ct > 0 such that

(1.1) ∥eit
√
−∆f∥Lp(Rd) ≤ Ct∥f∥Lp

sp (Rd), sp = (d− 1)
(
1
2
− 1

p

)
.

Here Lp
s denotes the usual Lp-Sobolev space. The result is sharp in the sense that

sp cannot be replaced by a smaller number. The local smoothing problem for the
wave equation, proposed by Sogge [Sog91], aims to establish sharp space-time
Lp-Sobolev estimates for eit

√
−∆ where t ∈ [1, 2]. In particular, one aims to gain

derivatives over (1.1) and conjectures that for all 2 < p < ∞ and all ε > 0 there
exists a constant Cε > 0 such that

(1.2)
(∫ 2

1

∥eit
√
−∆f∥pp dt

) 1
p ≤ Cε∥f∥Lp

σp+ε
, σp =

{
0 if 2 < p < 2d

d−1

sp − 1
p

if p > 2d
d−1

.

The first result of this kind was proved by Wolff [Wol00] for large values of p. In
two dimensions, Sogge’s conjecture was recently established for all 2 < p < ∞
by Guth, Wang and Zhang [GWZ20]. In [HNS11] it was also conjectured that for
p > 2d

d−1
the inequality (1.2) should hold even with ε = 0, and this endpoint result

was verified for p > 2(d−1)
d−3

, d ≥ 4. For d ≥ 3, the current best result with the ε-loss
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corresponds to the range p ≥ 2(d+1)
d−1

, which was proved by Bourgain and Demeter
[BD15]. We refer to the survey [BHS21] for further history of the problem. The
Lp-bound also implies an inequality with Lp

rad(L
2
sph) in place of Lp(Rd); the version

of Sogge’s conjecture in this category was proved in [MS01].
In this paper, we introduce a fractal version of the local smoothing problem,

which we validate in the radial case. To formulate it, we first note that (1.2) can
be rewritten in a discretized form when frequency localized to an annulus of
frequencies ≈ 2j where j ≥ 1. Define Pj = φ(2−j|D|) where φ is a smooth bump
function supported in the interval (1

4
, 4). Then a version equivalent to (1.2) with

ε > 0 is that for all 2 < p < ∞ and s > max(sp,
1
p
), there exists a constant Cs > 0

such that

(1.3)
(∑

t∈Ej

∥eit
√
−∆Pjf∥pp

) 1
p ≤ Cs2

js∥f∥p

where Ej is a maximal 2−j-separated subset of [1, 2]. In the fractal problem we
replace [1, 2] by an arbitrary subset E, and let Ej be a 2−j-discretization of E, i.e., a
maximal 2−j-separated subset of E. We then ask how the optimal exponent s is
determined by E.

Given any bounded E ⊂ R define the Legendre–Assouad function ν♯
E : R → R by

(1.4) ν♯
E(α) = lim sup

δ→0

log
(
supδ≤|I|≤1 |I|−αN(E ∩ I, δ)

)
log(1

δ
)

,

where the supremum is taken over all intervals I of length between δ and 1. The
terminology in this definition is motivated by Theorem 1.2 below. The quantity
ν♯
E(α) was introduced in a study of circular maximal operators by the first, second

and fourth authors in [BRS24+]. It turns out that for all E ⊂ [1, 2], the critical
exponent in (1.3) can be expressed in terms of ν♯

E , at least in the radial setting.
While ν♯

E(α) is well-defined for all α ∈ R, we care about the case α ≥ 0, because
ν♯
E(α) = dimM E for all α ≤ 0, where dimM E denotes the upper Minkowski

dimension of E.

Theorem 1.1. Let E ⊂ [1, 2] and 2 ≤ p < ∞. Then for every ε > 0 there exist a constant
Cε,p > 0 such that for all j ≥ 1 and all 2−j-discretizations Ej of E,

(1.5)
(∑

t∈Ej

∥eit
√
−∆Pjf∥pp

)1/p

≤ Cε,p2
j( 1

p
ν♯E(psp)+ε)∥f∥Lp

rad

for all radial Lp functions f . Moreover, the inequality is sharp up to the ε-loss.

The proof of the upper bound is fairly standard: it is a refinement of the argument
in [MS95] for E = [1, 2] (see also [CCS02]) and extends it as an essentially sharp
result for arbitrary sets E ⊂ [1, 2]. Note that for E = [1, 2] we have

(1.6) 1
p
ν♯
[1,2](psp) =

{
1
p

if p ≤ 2d
d−1

sp if p > 2d
d−1
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matching the exponents in the standard local smoothing conjecture (1.3). It is
reasonable to conjecture that Theorem 1.1 holds for all Lp functions; this constitutes
a fractal analogue of Sogge’s conjecture for general Lp functions.

The Legendre–Assouad function is closely related to the Assouad spectrum of
E, which we now recall. For 0 ≤ θ < 1 define dimA,θ E as the infimum over all
exponents a > 0 for which there exists a constant C such that

N(E ∩ I, δ) ≤ C(|I|/δ)a.

for all intervals I with |I| = δθ and δ ∈ (0, 1) (Fraser–Yu [FY18]). The Assouad
spectrum is the function θ 7→ dimA,θ E. At θ = 0 we recover the upper Minkowski
dimension

β = dimM E = dimA,0 E.

The Assouad spectrum is continuous on [0, 1) and the limit

γ = dimqA E = lim
θ→1−

dimA,θ E

exists and is called the quasi-Assouad dimension (Lü–Xi [LX16]). We refer the reader
to Fraser’s monograph [Fra20] for further information.

The Legendre transform of a (not necessarily convex) continuous function ν
defined on a closed interval I ⊂ R is defined by

(1.7) ν∗(α) = sup
θ∈I

θα− ν(θ),

which is finite for all α ∈ R if I is compact. It was observed in [BRS24+] that ν♯
E

equals the Legendre transform of

(1.8) νE(θ) = −(1− θ) dimA,θ E, θ ∈ [0, 1],

under a certain regularity assumption on E. We note that a certain conjugate to
the Assouad spectrum also appeared in [BFKR24+].

The function νE is increasing, but may not be convex (see [FY18; Rut24]). The
next theorem says that the regularity assumption in [BRS24+] can be removed, and
combining this with the characterization of Assouad spectra by the third author
[Rut24] allows us to obtain a simple characterization of the class of functions
which occur as Legendre–Assouad function of some subset of [1, 2]. 1

Theorem 1.2. The following hold:
(i) For all bounded E ⊂ R, ν♯

E = ν∗
E .

(ii) A function τ : [0,∞) → [0,∞) satisfies ν♯
E|[0,∞) = τ for some bounded set E ⊂ R

if and only if τ is increasing, convex, and satisfies τ(α) = α for α ≥ 1.

As a consequence of (i), ν♯
E only depends on the convex hull of νE which by convex

duality is equal to ν∗∗
E = (ν♯

E)
∗. This together with the characterization of increasing

Assouad spectra in [Rut24, Corollary B] gives (ii). We provide the details in §2.

1The value of ν♯E(α) does not change under dilations and translations, so if τ = ν♯E for some
bounded E, then also τ = ν♯E′ for some E′ ⊂ [1, 2].
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Corollary 1.3. Let E be bounded and γ = dimqA E. Then

(1.9) ν♯
E(α) = α if α ≥ γ

and the number γ is minimal with this property.

Note that (1.9) was already observed in [BRS24+]. For 0 ≤ α ≤ γ, ν♯
E(α) can be

interpreted as a new dimensional spectrum interpolating between Minkowski and
quasi-Assouad dimension. If β < γ, then ν♯

E(α) is strictly increasing for α ≥ 0.
Applying (1.9) to the sharp exponent in (1.5) we obtain 1

p
ν♯
E(psp) = sp for

p ≥ pγ = 2(d−1+γ)
d−1

, where γ = dimqA E. This implies that if the standard local
smoothing conjecture (1.3) is known for some p◦ ≥ 2d

d−1
, then the corresponding

fractal conjecture is also true for all p ≥ p◦ and all E ⊂ [1, 2]. However for p < 2d
d−1

,
the fractal problem differs from the classical one, and for general E ⊂ [1, 2] the
supercritical regime p ≥ 2d

d−1
in (1.6) is replaced by p ≥ 2(d−1+γ)

d−1
.

In particular, we have the following.

Corollary 1.4. For every E ⊂ [1, 2] with γ = dimqA E, p ≥ pγ = 2(d−1+γ)
d−1

, ε > 0, and
radial f , (∑

t∈Ej

∥eit
√
−∆Pjf∥pp

)1/p

≤ Cε,p 2
j(sp+ε)∥f∥Lp

rad
.

The exponent is sharp up to the ε-loss.

Theorem 1.2 illustrates a striking contrast to the classical local smoothing
problem: solving the fractal smoothing problem for p = pγ does typically not
imply sharp estimates in the range 2 < p < pγ by interpolating with p = 2.

Indeed, for this interpolation to be sharp it is necessary that

(1.10) 1
p
ν♯
E(psp) =

{(
1− β

γ

)
sp +

β
p

if 2 ≤ p ≤ pγ,

sp if p ≥ pγ.

That is, ν♯
E consists of two affine linear pieces. But Theorem 1.2 (ii) says in particular

that the function ν♯
E need not be piecewise affine. This is the same phenomenon

observed in [RS23] for the Lp → Lq type sets of spherical maximal functions
(although ν♯

E was not mentioned explicitly there).
The interpolated exponents (1.10) occur if E is quasi-Assouad regular, that is if

its (upper) Assouad spectrum takes the form

(1.11) dimA,θE =

{
β

1−θ
if 0 < θ ≤ 1− β

γ
,

γ if 1− β
γ
≤ θ < 1.

The equation can be interpreted as saying that the Assouad spectrum should
always achieve its largest possible value given the endpoint values β and γ (indeed,
dimA,θ E is always bounded by the right hand-side in (1.11), see [FY18]). Examples
include all cases where β = γ (such as self-similar Cantor-type sets), and convex
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sequences E = {1 + n−a : n ≥ 1} with a > 0, where β = (a+ 1)−1 and γ = 1. For
other examples see [RS23; Rut24]. The simplest examples where (1.10) fails are of
the form E = E1 ∪ · · · ∪ Ek with E1, . . . , Ek quasi-Assouad regular.

Then

ν♯
E = max(ν♯

E1
, . . . , ν♯

Ek
).

Remark 1.5. The above definition of quasi-Assouad regular sets is equivalent to
that introduced in [RS23] (see [Rut24, Corollary C] for the equivalence).

The Legendre–Assouad function is also relevant for other related estimates
with a fractal feature (e.g. circular maximal functions [BRS24+]). As a further
example we prove certain Strichartz type estimates for eit

√
−∆ with fractal sets

of times E ⊂ [1, 2]. In this case we obtain a result valid for all L2-functions (not
necessarily radial).

Theorem 1.6. Let E ⊂ [1, 2], 2 ≤ r ≤ q < ∞ and

s > sE(q) =
d+1
2
(1
2
− 1

q
) + 1

q
ν♯
E

(
d−1
2
( q
2
− 1)

)
.

Then there exists a constant Cs,q > 0 such that for all f ∈ L2

(1.12)
∥∥∥(∑

t∈Ej

|e−it
√
−∆Pjf |r

)1/r∥∥∥
q
≤ Cs,q2

js∥f∥2.

Moreover, if s < sE(q) this conclusion fails to hold.

The critical exponent sE(q) does not depend on r. Thus the upper bound
follows from the case r = 2. The corresponding square function is relevant to
variation bounds for spherical averages: for recent results and further references
see [BOR+22], [Whe24+]. The proof of the upper bounds in Theorem 1.6 is based on
familiar TT ∗ arguments; it can be seen as a refinement of a result in [AHRS21] for
r = q. We note that it is mainly interesting for us in the range 2 ≤ q < qγ = 2(d−1+2γ)

d−1
,

with γ = dimqA E. Since ν♯
E(α) = α for α ≥ γ and since d−1

2
( q
2
− 1) ≥ γ if and only

if q ≥ qγ , we see that the operator norm in (1.12) is ≲q,ε 2
jd( 1

2
− 1

q
)+jε for q ≥ qγ . If

one replaces the quasi-Assouad dimension γ by the Assouad dimension a stronger
result for q ≥ qγ can be proven with ε = 0: see Proposition 6.3 below.

The case r = q in Theorem 1.6 is a specific case of a more general Lp → Lq

fractal local smoothing conjecture.

Conjecture 1.7. Let E ⊂ [1, 2] and 1 < p ≤ q < ∞, q > p′. Then for every s >

sE(p, q) :=
d+1
2
(1
p
− 1

q
) + 1

q
ν♯
E

( q(d−1)
2

(1− 1
p
− 1

q
)
)
, there exists a constant Cs,p,q > 0 such

that (∑
t∈Ej

∥eit
√
−∆Pjf∥qq

) 1
q ≤ Cs,p,q2

js∥f∥p

holds for all j ≥ 1 and all 2−j-discretizations Ej of E.
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It will be shown in Proposition 4.1 that sE(p, q) cannot be replaced by a smaller
value. We note that sE(2, q) = sE(q) in Theorem 1.6, and thus the conjecture is
verified for p = 2. For q = p, we note that sE(p, p) = 1

p
ν♯
E(psp), which matches

the exponent in Theorem 1.1 and the corresponding conjecture for general Lp-
functions. For E = [1, 2], one recovers the numerology in [BS22, Conjecture 1.1]
and for E = {t0} ⊂ [1, 2], it coincides with the numerology of the fixed-time
Lp − Lq estimate, which follows from interpolating (1.1) with the standard bound
∥eit

√
−∆Pj∥L1→L∞ ≲ 2j

d+1
2 . Note that sE(p, q) = sq +

1
p
− 1

q
for q ≥ p′ d−1+2γ

d−1
and all

E ⊆ [1, 2]. Under this condition, the case q = p of the above conjecture implies
the q > p case by interpolation with the L1 → L∞ bound, similarly to the case
E = [1, 2]. However, this is not generally true if q < p′ d−1+2γ

d−1
and E ⊂ [1, 2] is

arbitrary.

Remark 1.8. Different types of fractal space-time problems for the wave equation
or spherical means have been considered in the literature, see for example [CHL17;
HKL22; IKS+19; Obe06; Whe24+]. These authors put a fractal measure µ on space-
time Rd × R and ask for corresponding Lp(Rd) → Lq(µ) estimates, using some
notion of Hausdorff dimension for the measure µ. See also Wheeler [Whe24+]
where Corollary 1.4 is conjectured for all f ∈ Lp in the case when the Minkowski
and Assouad dimensions of E coincide. Many interesting questions arise.

Notational conventions. Given a list of objects L and real numbers A, B ≥ 0, here
and throughout we write A ≲L B or B ≳L A to indicate A ≤ CLB for some
constant CL which depends on only items in the list L. We write A ∼L B to
indicate A ≲L B and B ≲L A. We say that a real-valued function f on the real line
is increasing (as opposed to non-decreasing) if f(x) ≤ f(y) whenever x ≤ y are in
its domain.

Structure of the paper. In §2 we discuss properties of ν♯
E and prove Theorem 1.2. In

§3 we prove sharpness of Theorem 1.1. In §4 we prove sharpness of Theorem 1.6
and motivate the numerology in the Lp → ℓqEj

(Lq) conjecture. In §5 we prove the
upper bounds in Theorem 1.1 and in §6 we prove the upper bounds in Theorem 1.6.

2. THE LEGENDRE–ASSOUAD FUNCTION

In this section we prove Theorem 1.2 and Corollary 1.3. Let us first recall some
basic facts about the Legendre transform. Let ν : I → R be a continuous function
that is not necessarily convex, defined on a closed interval I ⊂ R. Its Legendre
transform ν∗ (defined by (1.7)) is always convex, as a supremum of affine functions,
and a basic fact is convex duality: the function ν∗∗ = (ν∗)∗ is the convex hull of ν,
i.e. it is the largest convex function bounded above by ν. In particular, we have
ν = ν∗∗ if and only if ν is convex. Note that here we adopt the convention to
extend ν to a function on R by setting ν(θ) = ∞ for θ ̸∈ I , so that both ν and ν∗ are
defined on all of R. More details can be found in e.g. [Roc97].
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Proof (of Theorem 1.2, (i)). Let γE(θ) = dimA,θ E and

φ(δ, θ) =
sup|I|=δθ logN(E ∩ I, δ)

(1− θ) log(1
δ
)

.

Then the claim can be rewritten as

(2.1) lim sup
δ→0

sup
θ∈[0,1]

θα + (1− θ)φ(δ, θ) = max
θ∈[0,1]

θα + (1− θ)γE(θ).

Fix α ≥ 0. We first prove the lower bound in (2.1). Since the Assouad spectrum
is continuous, there exists θα ∈ [0, 1] such that the right-hand side of (2.1) equals

(2.2) θαα + (1− θα)γE(θα).

By taking θ = θα in the supremum,

lim sup
δ→0

sup
θ∈[0,1]

θα + (1− θ)φ(δ, θ) ≥ θαα + (1− θα) lim sup
δ→0

φ(δ, θα),

which is equal to (2.2), concluding the proof of the lower bound.
To prove the upper bound let ε > 0. Let (δn) be a monotone sequence converg-

ing to zero so that the left-hand side of (2.1) equals

lim
n→∞

sup
θ∈[0,1]

θα + (1− θ)φ(δn, θ).

By definition of the supremum, for every n ∈ N there exists θn ∈ [0, 1] such that

(2.3) sup
θ∈[0,1]

θα + (1− θ)φ(δn, θ) ≤ θnα + (1− θn)φ(δn, θn) + ε.

By passing to a subsequence we may assume that (θn) converges to a limit θ∗ ∈
[0, 1]. By continuity of θ 7→ (1− θ)γE(θ) at θ∗ we may choose a value θ−∗ = θ−∗ (ε) in
[0, θ∗) close to θ∗ so that

(2.4) (1− θ−∗ )γE(θ
−
∗ ) ≤ (1− θ∗)γE(θ∗) + ε.

Further since θn → θ∗ there exists Nε so that for all n ≥ Nε we have

(2.5) θn ≥ θ−∗ and θnα ≤ θ∗α + ε.

Then there exists a constant Cε > 0 such that

(2.6) sup
|I|=δθnn

N(E ∩ I, δn) ≤ sup

|I|=δ
θ−∗
n

N(E ∩ I, δn) ≤ Cεδ
−(1−θ−∗ )γE(θ−∗ )−ε
n

for n ≥ Nε (using θn ≥ θ−∗ in the first inequality and the definition of Assouad
spectrum in the second). Hence, for n ≥ Nε,

(1− θn)φ(δn, θn) ≤ logCε

log( 1
δn

)
+ (1− θ−∗ )γE(θ

−
∗ ) + ε.
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By making Nε larger if needed we may also assume log(Cε)/ log(1/δn) ≤ ε for all
n ≥ Nε. Then from (2.4) and (2.6)

(1− θn)φ(δn, θn) ≤ (1− θ−∗ )γE(θ
−
∗ ) + 2ε ≤ (1− θ∗)γE(θ∗) + 3ε

for n ≥ Nε. Combining this with (2.3) and (2.5) we conclude

sup
θ∈[0,1]

θα + (1− θ)φ(δn, θ) ≤ θ∗α + (1− θ∗)γE(θ∗) + 5ε

≤ max
θ∈[0,1]

θα + (1− θ)γE(θ) + 5ε.

Since ε > 0 was arbitrary this concludes the proof. □

Proof (of Theorem 1.2, (ii)). By part (i), ν♯
E is convex, because it equals the Legen-

dre transform of νE . It is increasing since θ ≥ 0 in the maximum in (2.1). Finally,
if α ≥ 1, then ν♯

E(α) = α: the lower bound always holds by taking θ = 1 and the
upper bound follows from dimA,θ E ≤ 1 and α ≥ 1.

To show the converse, let τ : [0,∞) → [0,∞) be increasing, convex and τ(α) = α
for α ≥ 1. Note that τ(α) ≥ α for all α ∈ [0,∞) by convexity and assumption.
Define the function ν : [0, 1] → R by

ν(θ) = τ ∗(θ) = sup
α≥0

αθ − τ(α)

for 0 ≤ θ ≤ 1. (Note τ ∗(θ) is defined for all θ ≤ 1.) Note that ν(1) = 0 since
α ≤ τ(α) and τ(1) = 1. For θ ∈ (0, 1) define

(2.7) γ(θ) =
−ν(θ)

1− θ
.

We now use the characterization of the class of increasing functions that are
attainable as the Assouad spectrum of a bounded set E ⊂ R from [Rut24, Corol-
lary B]. It states that if γ : (0, 1) → [0, 1] is an increasing function such that

θ 7→ ν(θ) = −(1− θ)γ(θ)

is increasing on (0, 1), then γ is the Assouad spectrum of a bounded subset E ⊂ R.
Let us verify these assumptions for γ as defined in (2.7). First, γ is increasing

because ν = τ ∗ is convex; indeed, since ν(1) = 0, we have ν(θt + (1− t)) ≤ tν(θ)
for all t, θ ∈ [0, 1]. Second, ν is increasing because the supremum in its definition
is taken over α ≥ 0. Finally, γ takes values in the interval [0, 1]: the inequality
γ(θ) ≥ 0 follows because ν(1) = 0 and ν is increasing, and the inequality γ(θ) ≤ 1
is equivalent to τ ∗(θ) ≥ θ − 1 which holds because τ(1) = 1 (take α = 1 in
the supremum defining τ ∗). Thus, we obtain a bounded E with νE = ν, where
νE(θ) = −(1− θ) dimA,θ E as in (1.8). By part (i) of Theorem 1.2 and convex duality,

ν♯
E = ν∗

E = ν∗ = τ ∗∗ = τ

which concludes the proof. □
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Proof (of Corollary 1.3). Let γE(θ) = dimA,θ E, γ = dimqA E. By Theorem 1.2 (i),

(2.8) ν♯
E(α) = sup

θ∈[0,1]
αθ + (1− θ)γE(θ).

First note that ν♯
E(α) ≥ α for all α ∈ R by taking θ = 1 in the supremum. If α ≥ γ,

then ν♯
E(α) ≤ α holds also by using γE(θ) ≤ γ. To show the minimality claim

suppose ν♯
E(α) > α. It then suffices to show that α < γ. By continuity of the

Assouad spectrum, for every α ∈ R there exists θα ∈ [0, 1] where the supremum
in (2.8) is attained. Since γE(θα) ≤ γ we obtain α < ν♯

E(α) ≤ αθα + (1 − θα)γ,
equivalently (1− θα)α < (1− θα)γ and θα ̸= 1. Thus α < γ, as required. □

3. LOWER BOUNDS IN THEOREM 1.1

In this section we test the half-wave operator on suitable radial functions to show
the (essential) sharpness of Theorem 1.1. Let I ⊂ [1, 2] be an interval of length
|I| ≥ M2−j containing points in Ej , with M ≥ 1 a sufficiently large constant
chosen below. It suffices to prove that

(3.1) sup
∥g∥p≤1

∑
t∈Ej∩I

∥eit
√
−∆g∥pp ≳ N(E ∩ I, 2−j)|I|−psp .

By the definition of ν♯
E in (1.4), this implies that (1.5) is sharp up to the ε-loss.

To this end, let I ′ be a subinterval of I with length |I|/2 such that N(E∩ I ′, δ) ≥
1
2
N(E ∩ I, δ) and let tI be the boundary point of I such that dist(tI , I ′) ≥ |I|/4;

without loss of generality, we assume that tI is the left endpoint.
Consider the radial function gI given by

ĝI(ξ) = e−itI |ξ|φ(2−j|ξ|)

where φ is a nonnegative bump function on (1/2, 2). We first observe

(3.2) ∥gI∥p ≲ 2j(
d+1
2

− 1
p
).

Indeed from Plancherel’s theorem ∥gI∥2 ≤ 2jd/2. For an L∞ bound we observe first
that a multiple integration-by-parts yields |gI(x)| = O(1) for |x| < 1/2 and |x| ≥ 3.
For 1/2 < |x| < 3 we use the Fourier inversion formula for radial functions [SW71,
§IV.3]

gI(x) = (2π)−d/2

∫ ∞

0

e−itIsφ(2−js)J d−2
2
(s|x|)(s|x|)−

d−2
2 sd−1 ds.

Recall also from [SW71, §IV.3] the well-known asymptotics for |u| ≥ 1,

(3.3) J d−2
2
(u) =

(
e−i(u−π

4
(d−1)) + ei(u−

π
4
(d−1))

)
(2πu)−1/2 +R(u)

where |R(u)| = O(|u|−3/2) for |u| ≥ 1. From this we see that |gI(x)| ≲ 2j(d+1)/2,
which is also the bound for ∥gI∥∞. Thus (3.2) follows using ∥g∥p ≤ ∥g∥2/p2 ∥g∥1−2/p

∞
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for 2 ≤ p ≤ ∞. We note that by a slightly more careful argument one can show the
pointwise bound |gI(x)| ≲N 2j

d+1
2 (1 + 2j||x| − tI |)−N which also gives (3.2).

We now turn to lower bounds for ∥eit
√
−∆gI∥p. Again by the Fourier inversion

formula for radial functions we have

eit
√
−∆gI(x) = (2π)−d/2

∫ ∞

0

ei(t−tI)sφ(2−js)J d−2
2
(s|x|)(s|x|)−

d−2
2 sd−1 ds.

Then, for |x| ≥ 2−j+2 we can write using (3.3)

(3.4) eit
√
−∆gI(x) = T−

t gI(x) + T+
t gI(x) + T rem

t gI(x),

where

T±
t gI(x) = |x|−

d−1
2

e∓iπ
4
(d−1)

(2π)(d+1)/2

∫ ∞

0

ei(t−tI±|x|)sφ(2−js)s
d−1
2 ds

and the remainder term is given by

T rem
t gI(x) = |x|−

d−2
2

∫ ∞

0

R(|x|s)φ(2−js)s
d
2 ds.

Given t ∈ Ej∩I ′, let Jt = [t−tI−2−j−5, t−tI+2−j−5], and define Dt = {x : |x| ∈ Jt}.
We will examine each of the terms in (3.4) for x ∈ Dt.

If x ∈ Dt, then

|T−
t gI(x)| ≳ |x|−

d−1
2

∫ ∞

0

φ(2−js)s
d−1
2 ds ≳ |x|−

d−1
2 2j

d+1
2 .

Consequently,

∥T−
t gI∥Lp(Dt) ≳ 2j

d+1
2

(∫
Jt

r−(d−1)( p
2
−1) dr

)1/p

≳ 2j(
d+1
2

− 1
p
)|I|−(d−1)( 1

2
− 1

p
)(3.5)

using that if r ∈ Jt, then r ∼ |t− tI | ∼ |I|.
For the term T+

t , we have by repeated integration-by-parts,

|T+
t gI(x)| ≲N |x|−

(d−1)
2 2j

d−1
2

2j(
1 + 2j(|x|+ t− tI)

)N
for any N > 0. Thus

∥T+
t gI∥Lp(Dt) ≲ 2j

d+1
2

(∫
Jt

r−(d−1)( p
2
−1) 1

(1 + 2jr)N
dr

)1/p

≲ 2j
d+1
2 |I|−(d−1)( 1

2
− 1

p
)(2j|I|)−N/p|Jt|

1
p ≤ M−12j(

d+1
2

− 1
p
)|I|−(d−1)( 1

2
− 1

p
)(3.6)

using that r ∼ |I| for r ∈ Jt, |Jt| ∼ 2−j , (2j|I|) ≥ M and choosing N > p. For the
remainder term we have for x ∈ Dt,

|T rem
t gI(x)| ≲ |x|−

(d+1)
2

∫ ∞

0

φ(2−js)s
d−3
2 ds ≲ |x|−

(d+1)
2 2j

d+1
2 2−j.
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Then

∥T rem
t gI∥Lp(Dt) ≲ 2j

d−1
2

(∫
Jt

r−(d−1)( p
2
−1)r−p dr

) 1
p

≲ 2j
d−1
2 |I|−(d−1)( 1

2
− 1

p
)|I|−1|Jt|

1
p ≲ M−12j(

d+1
2

− 1
p
)|I|−(d−1)( 1

2
− 1

p
)(3.7)

since r ∼ |I| for r ∈ It and |It| ∼ 2−j , (2j|I|) ≥ M . From (3.6) and (3.7) we obtain,
with a sufficiently large choice of M ,

∥T+
t gI∥Lp(Dt) + ∥T rem

t gI∥Lp(Dt) ≤
1

2
∥T−

t gI∥Lp(Dt).

Combining this with (3.4) and the lower bound (3.5) for T−
t , and taking the ℓp

norm in t ∈ Ej ∩ I ′ we get( ∑
t∈Ej∩I′

∥eit
√
−∆gI∥pLp(Dt)

)1/p

≳ 2j(
d+1
2

− 1
p
)|I|−(d−1)( 1

2
− 1

p
)N(E ∩ I, 2−j)

1
p ;

here we used that N(E ∩ I ′, 2−j) ≥ 1
2
N(E ∩ I, 2−j). Since ∥gI∥p ≲ 2j(

d+1
2

− 1
p
) we

obtain the desired lower bound (3.1).

4. LOWER BOUNDS FOR THE Lp → ℓqEj
(Lq) CONJECTURE

We construct counterexamples motivated by the examples for maximal operators
in [AHRS21], [RS23]. These are associated to spherical pieces intermediate between
spherical Knapp caps and full spheres. However, here we choose a sectorial
localization on the Fourier side.

Proposition 4.1. Let 1 ≤ p < ∞, q > p′. Then there exist constants c(q) and ρ ≪ 1
such that for all intervals I with 2j ≥ 2j|I| ≥ ρ−1

(4.1) sup
∥f∥p≤1

(∑
t∈Ej

∥eit
√
−∆f∥qq

)1/q

≥ c(q)ρ
d
q
N(E ∩ I, 2−j)

1
q 2j

d+1
2

( 1
p
− 1

q
)

|I|
d−1
2

(1− 1
p
− 1

q
)

.

The case p = 2 in the proposition shows that in Theorem 1.6 the critical sE(q)
cannot be replaced by a smaller value for r = q, which implies the same conclusion
for 2 ≤ r ≤ q by the nesting of the ℓr spaces. The case for general p, q shows that in
Conjecture 1.7 the exponent sE(p, q) cannot be replaced by a smaller one.

Proof (of Proposition 4.1). Let m ∈ N be such that 2m ≤ ρ−1 and j ≥ m and let I
be an interval of length 2m−j ≤ |I| ≤ 2m−j+1. Let I ′ be a subinterval of I such that
|I ′| ≈ ρ|I| and N(E ∩ I ′, 2−j) ≥ ρN(E ∩ I, 2−j). Let tI ∈ I ′ ∩ Ej .

Let υ be a nonnegative C∞
c (B(0, 1)) function such that υ = 1 in a neighborhood

of the origin. Define fI ∈ Lp by its Fourier transform via

f̂I(ξ) = (2π)dφ(2−j|ξ|)υ(2
m
2 ( ξ

|ξ| − e1))e
−itI |ξ|.
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We first show that

(4.2) ∥fI∥p ≲ 2j(
d+1
2

− 1
p
)2−m d−1

2p .

We use a standard argument from [SSS91] and decompose the Fourier transform
into pieces supported on sectors of angular width O(2−j/2). For this decomposition
split variables as ξ = (ξ1, ξ

′) and note that on the support of f̂I we have ξ1 ≈ 2j

and |ξ′| ≲ 2−m/2ξ1. Choose χ ∈ C∞
c (Rd−1) supported in (−1, 1)d−1 such that∑

z∈Zd−1 χ(ξ′ − z) = 1 for all ξ′ ∈ Rd−1. Then we write fI =
∑

z fI,z where

f̂I,z(ξ) = (2π)de−itI |ξ|φ(2−j|ξ|)υ(2
m
2 ( ξ

|ξ| − e1))χ(2
j/2 ξ′

ξ1
− z).

An integration-by-parts argument in [SSS91] gives

(4.3) |fI,z(x)| ≲N
2j

(1 + 2j|⟨x, ez⟩ − tI |)N
2j(d−1)/2

(1 + 2j/2|π⊥
z x|)N

where ez =
(1,2−j/2z)√
1+2−j |z|2

and π⊥
z is the orthogonal projection to the orthogonal comple-

ment of Rez. Here we use that |⟨ez,∇⟩Nυ(2m
2 ( ξ

|ξ|−e1))| ≲N 2−jN for |2−j/2z| ≲ 2−m/2

and also |⟨ez,∇⟩Nχ(2j/2 ξ′

ξ1
− z)| ≲N 2−jN for all N ≥ 0.

One computes that ∥fI,z∥1 = O(1). In view of the support properties of f̂I
the sum

∑
z fI,z extends over O(2

j−m
2

(d−1)) contributing terms and thus we get
∥fI∥1 ≲ 2

j−m
2

(d−1) which is (4.2) for p = 1. Regarding p = ∞, we clearly have
∥fI,z∥∞ = O(2j

d+1
2 ). However note that tI ≈ 1 and the vectors tIez are c2−j/2-

separated, and thus one can use the decay properties in (4.3) to see that the same
bound holds for the sum,

∑
z fI,z. That is, we get ∥fI∥∞ ≲ 2j

d+1
2 which is (4.2) for

p = ∞. We now conclude (4.2) using ∥f∥p ≤ ∥f∥1/p1 ∥f∥1−1/p
∞ for 1 ≤ p ≤ ∞.

For t ∈ I ′ ∩ Ej , let

RI,t =
{
x = (x1, x

′) ∈ Rd : |x1 + t− tI | ≤ 2−j, |x′| ≤ ρ2−j+m
2

}
.

We will next prove a lower bound for |eit
√
−∆fI(x)| and x ∈ RI,t.

We use polar coordinates in the Fourier variable ξ and write ξ = rθ(ω) where
ω → θ(ω) is a smooth parametrization of Sd−1 near e1 with θ(0) = e1. Here, the
parameter ω lives in a neighborhood of the origin of Rd−1. Then

eit
√
−∆fI(x) =

∫
υ(2

m
2 (θ(ω)− e1))

∫
rd−1φ(2−jr)eir(t−tI+⟨x,θ(ω)⟩) dr dσ(ω).

We write ⟨x, θ(ω)⟩ = x1 + ⟨x, θ(ω)− e1⟩ and

eit
√
−∆fI(x) = I(x, t) + II(x, t)

where

I(x, t) =

∫
rd−1φ(2−jr)eir(t−tI+x1) dr

∫
υ(2

m
2 (θ(ω)− e1))dσ(ω)
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and

II(x, t) =

∫
rd−1φ(2−jr)eir(t−tI+x1)

∫
um(r, ω, x)dr dσ(ω),

with

um(r, ω, x) = υ(2
m
2 (θ(ω)− e1))

(
eir⟨x,θ(ω)−e1⟩ − 1

)
.

For the term I(x, t) we set ϕ(r) = φ(r)rd−1 and note

I(x, t) = cm2
−m d−1

2 2jdϕ̂(2j(tI − t− x1))

with cm ≈ 1. Using that (
∫ 1/4

−1/4
|ϕ̂(s)|q ds)1/q ≳ 1 we obtain the lower bound

(4.4)
(∫

RI,t

|I(x, t)|q dx
)1/q

≳ ρ
d−1
q 2jd(1−

1
q
)2−m d−1

2
(1− 1

q
).

For the term II(x, t) we get a corresponding upper bound, multiplied with an
additional small factor of ρ. To see this, we expand

(4.5) eir⟨x,θ(ω)−e1⟩ − 1 =
∞∑
n=1

1

n!
(ir)n(⟨x, θ(ω)− e1⟩)n

and write

⟨x, θ(ω)− e1⟩ = x1(θ1(ω)− 1) +
d∑

i=2

xiθi(ω).

For t ∈ I ′ and x ∈ RI,t, we have |x1| ≲ |t − tI | ≲ 2m−jρ and because of
⟨e1, ∂θ(ω)∂ωi

⟩|ω=0 = 0 we get |x1(θ1(ω) − 1)| ≲ 2−jρ. Furthermore, for i = 2, . . . , d,
one has |xiθi(ω)| ≲ 2−m/2|xi| ≲ 2−jρ. Thus,

(4.6) |⟨x, θ(ω)− e1⟩| ≲ 2−jρ for x ∈ RI,t, t ∈ I ′.

Using the expansion (4.5) we write II =
∑∞

n=1 IIn and note the pointwise bounds

n!|IIn(x, t)| ≤ 2j(d+n)|ϕ̂n(2
j(tI − t− x1))|

∫
|υ(2

m
2 (θ(ω)− e1)||⟨x, θ(ω)− e1⟩|n dσ(ω),

where ϕn(r) = φ(r)rd−1+n. We have |ϕ̂n(y)| ≤ Cdn
d+1(1 + |y|)−d−1 as can be seen

using a (d+ 1)-fold integration-by-parts in r. Hence

|IIn(x, t)| ≲ (Cdρ)
nn

d+1

n!
2−m d−1

2 2jd(1 + 2j|x1 + t− tI |)−d−1 for x ∈ RI,t,

using also (4.6). Taking the Lq(RI,t) norm and summing in n ≥ 1 leads to

(4.7)
(∫

RI,t

|II(x, t)|q dx
)1/q

≲d ρ
1+ d−1

q 2jd(1−
1
q
)2−m

(d−1)
2

(1− 1
q
).
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Thus, for sufficiently small ρ > 0 we get from (4.2), (4.4), and (4.7)(∑
t∈Ej∩I′∥e

it
√
−∆fI∥qq

)1/q

∥fI∥p
≳ ρ

d−1
q
N(E ∩ I ′, 2−j)

1
q 2jd(1−

1
q
)2−m d−1

2
(1− 1

q
)

2j(
d+1
2

− 1
p
)2−m d−1

2p

.

The right-hand side equals ρ
d−1
q N(E ∩ I ′, 2−j)

1
q 2(m−j) d−1

2
( 1
p
+ 1

q
−1)2j

d+1
2

( 1
p
− 1

q
). Since

N(E ∩ I ′, 2−j) ≥ ρN(E ∩ I, 2−j), the lower bound (4.1) follows. □

5. UPPER BOUNDS IN THEOREM 1.1

Proposition 5.1. Let 2 ≤ p < 2d
d−1

and sp = (d − 1)(1
2
− 1

p
). Then for ε > 0 and

sufficiently large j ≥ 1,

(5.1)
(∑

t∈Ej

∥eit
√
−∆Pjf∥pp

)1/p

≲ε 2
jε2j

1
p
ν♯E(psp)∥f∥Lp

rad
.

Once this is proven we can use that 1
p
ν♯
E(psp) = sp for p > pγ and obtain (1.5) by

interpolation (restricted to radial functions) of (5.1) with the p = ∞ version of the
fixed-time estimate (1.1) for functions whose Fourier transform is supported in
the annulus { |ξ| ≈ 2−j}.

Proof (of Proposition 5.1). For 0 ≤ m ≤ j define

κj,m = sup
|I|=2m−j

N(E ∩ I)|I|−psp

and note that, by definition of ν♯
E , we have κj,m ≤ Cε2

jε2jν
♯
E(psp) for any ε > 0. It

therefore suffices to prove that

(5.2)
(∑

t∈Ej

∥eit
√
−∆Pjf∥pp

)1/p

≲
( j∑

m=0

κj,m

)1/p

∥f∥Lp
rad
, 2 ≤ p < 2d

d−1
.

It was proven in [MS95, Proposition 3.2] that for f radial, |x| ≥ 20 and t ∈ [1, 2],
the estimate (∫

|x|≥20

|eit
√
−∆Pjf(x)|p dx

)1/p

≲ ∥f∥Lp
rad

holds for all 2 ≤ p < ∞, with constant independent of t. Consequently,(∑
t∈Ej

∥∥eit√−∆Pjf
∥∥p

Lp(Rd\B(0,20))

)1/p

≲ N(E, 2−j)1/p∥f∥Lp
rad
.

Since N(E, 2−j) ≤ sup2−j≤|I|≤1 N(E ∩ I, 2−j)|I|−psp ≲ max0≤m≤j κj,m, the inequality
(5.2) will follow from

(5.3)
∑
t∈Ej

∫
|x|≤20

|eit
√
−∆Pjf(x)|p dx ≲

j∑
m=0

κj,m∥f∥pLp
rad
, 2 ≤ p < 2d

d−1
.
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Since eit|ξ| is a radial Fourier multiplier for fixed t ∈ [1, 2], and φj and f are
radial, we can write the operator eit

√
−∆Pj as

eit
√
−∆Pjf(x) =

∫ ∞

0

Kj(|x|, t, s)f0(s)ds

where f(x) = f0(|x|) and

Kj(r, s, t) = sd/2r−(d−2)/2

∫ ∞

0

J d−2
2
(ρr)J d−2

2
(ρs)φ(2−jρ)eitρ dρ .

See, for instance, [SW71, §IV.3]. Here J d−2
2

denotes the Bessel function of order d−2
2

.
Using asymptotics of Bessel functions and integration-by-parts, it was shown in
[MS95, Lemma 2.1] that these kernels satisfy the estimates

|Kj(r, s, t)| ≲
(s
r

) d−1
2

∑
±

ωj(t± r ± s)

where ωj(u) ≲N 2j(1 + 2j|u|)−N for all N > 0 and the sum is over all four choices
of the two signs. Changing to polar coordinates and inserting the power weights
into the function and operator, the inequality (5.3) follows from the unweighted
one-dimensional estimates∑

t∈Ej

∫ 20

0

r(d−1)(1− p
2
)
∣∣∣ ∫ ∞

0

s(d−1)( 1
2
− 1

p
)ωj(t± r ± s)f0(s)ds

∣∣∣p dr

≲
j∑

m=0

κj,m

∫ ∞

0

|f0(s)|p ds(5.4)

for all possible choices of ±, where 2 ≤ p < 2d
d−1

. For p ≥ 2, we dominate the
left-hand side in (5.4) by

∑j
m=0 Im +

∑
n≥10 IIn, where for m < j

I0 =
∑
t∈Ej

∫ 2−j

0

r(d−1)(1− p
2
)
∣∣∣ ∫ 210

0

s(d−1)( 1
2
− 1

p
)ωj(t± r ± s)f0(s)ds

∣∣∣p dr,

Im =
∑
t∈Ej

∫ 2−j+m+1

2−j+m

r(d−1)(1− p
2
)
∣∣∣ ∫ 210

0

s(d−1)( 1
2
− 1

p
)ωj(t± r ± s)f0(s)ds

∣∣∣p dr,

Ij =
∑
t∈Ej

∫ 20

1

r(d−1)(1− p
2
)
∣∣∣ ∫ 210

0

s(d−1)( 1
2
− 1

p
)ωj(t± r ± s)f0(s)ds

∣∣∣p dr

and, with n ≥ 10,

IIn =
∑
t∈Ej

∫ 20

0

r(d−1)(1− p
2
)
∣∣∣ ∫ 2n+1

2n
s(d−1)( 1

2
− 1

p
)ωj(t± r ± s)f0(s)ds

∣∣∣p dr.

The terms IIn can be treated in a straightforward manner. Note that, for n ≥ 10,
we have by Hölder’s inequality

IIn ≲
∑
t∈Ej

∫ 20

0

r(d−1)(1− p
2
)
[ ∫ 2n+1

2n
2n(d−1)( 1

2
− 1

p
)2−nN2−jN |f0(s)|ds

]p
dr
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≲
∑
t∈Ej

(∫ 20

0

r(d−1)(1− p
2
) dr

)
2−jNp2−nN ′p

∫ ∞

1

|f0(s)|p ds

≲ N(E, 2−j)2−jNp2−nN ′p

∫ ∞

1

|f0(s)|p ds

for all 1 ≤ p < 2d
d−1

and N ′ > 0, provided N is chosen sufficiently large. Then

(5.5)
∑
n≥10

IIn ≲ 2−jN∥f0∥pp

for all 1 ≤ p < 2d
d−1

and any N > 0.
We now turn to the terms Im. The term Ij is also trivial, since for p ≥ 2

(5.6) Ij ≲
∑
t∈Ej

∫ 20

1

[ ∫ 210

0

ωj(t± r ± s)|f0(s)|ds
]p

dr ≲ N(E, 2−j)∥f0∥pp

by Young’s convolution inequality, noting that ∥ωj∥1 ≲ 1. For the term I0, we
define for each t ∈ [1, 2] the interval Jt,j = [t− 2−j+3, t + 2−j+3]. We note that for
t ∈ [1, 2] and 0 ≤ r ≤ 2−j

∫ 210

0

ωj(t± r ± s)|f0(s)|1J∁
t,j
(s)ds ≲ 2−jN

∫ 210

0

|f0(s)|ds ≲ 2−jN∥f0∥p

for any N > 0, and∫ 210

0

ωj(t± r ± s)|f0(s)|1Jt,j(s)ds ≲ ∥ωj∥p′∥f01Jt,j∥p ≲ 2j/p∥f01Jt,j∥p,

where both inequalities follow from the bound ωj(u) ≲N 2j(1 + 2j|u|)−N for any
N > 0 and Hölder’s inequality. Using these,

I0 ≲
(∫ 2−j

0

r(d−1)(1− p
2
) dr

)(
2−jNpN(E, 2−j)∥f0∥pp + 2j

∑
t∈Ej

∥f01It,j∥pp
)

≲ 2j(d−1)( p
2
−1)∥f0∥pp ≲ 2jν

♯
E(psp)∥f0∥pp(5.7)

for 2 ≤ p < 2d
d−1

, using that (d− 1)(p
2
− 1) = psp ≤ ν♯

E(psp).
We now address the main terms with 0 < m < j. We decompose [1, 2] into

disjoint intervals {Iµ} of length |Iµ| = 2−j+m, and denote by I∗µ the concentric
interval with 5 times the length. Then

Im ≲ 2(m−j)(d−1)(1− p
2
)
∑
µ

∑
t∈Ej∩Iµ

∫ 2−j+m+1

2−j+m

[ ∫ 210

0

ωj(t± r ± s)|f0(s)|ds
]p

dr

≲ sup
|I|=2m−j

|I|−(d−1)( p
2
−1)#(Ej ∩ I)

∑
µ

∫
I∗µ

[ ∫ 210

0

ωj(r
′ ± s)|f0(s)|ds

]p
dr′

≲ κj,m

∫ 2

1

[ ∫ 210

0

ωj(r
′ ± s)|f0(s)|ds

]p
dr′ ≲ κj,m

∫ 210

0

|f0(s)|p ds,
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by the change of variables r′ = t± r and noting that ∥ωj∥1 ≲ 1. Combining this
estimate with (5.6) and (5.7) we get

(5.8)
j∑

m=0

Im ≲
j∑

m=0

κj,m∥f∥pp .

By (5.8) and (5.5) we obtain (5.4) for all 2 ≤ p < 2d
d−1

, which concludes the proof.□

6. UPPER BOUNDS IN THEOREM 1.6

For the upper bounds in Theorem 1.6 it suffices to settle the case r = 2. Setting
T j
t = eit

√
−∆Pj we get from Young’s inequality and Plancherel’s theorem

(6.1) ∥T j
t ∥L2→Lq ≤ 2jd(1/2−1/q), 2 ≤ q ≤ ∞.

Moreover, by the usual TT ∗ argument [Str77], the asserted L2 → Lq(ℓ2Ej
) bound

for {T j
t }t∈Ej

is equivalent with the inequality

(6.2) ∥Sjg∥Lq(ℓ2Ej
) ≲ 22js∥g∥Lq′ (ℓ2Ej

)

where

Sjg(y, t) =
∑
t′∈Ej

T j
t (T

j
t′)

∗[g(·, t′)](y)

and s > sE(q). The Schwartz kernel of T j
t (T

j
t′)

∗ is given by 2jdKj(y, t, y
′, t′) where

Kj(y, t, y
′, t′) =

1

(2π)d

∫
Rd

|φ(|ξ|)|2ei2j [(t−t′)|ξ|+⟨y−y′,ξ⟩] dξ .

Let η̃ ∈ C∞
c (Rd) with η̃(w) = 1 for |w| ≤ 1/2 and η̃ compactly supported in {|w| ≤

1}. Let η(w) = η̃(w) − η̃(2w). Now we set η̃−j(w) = η̃(2jw) and ηk(w) = η(2−kw),
so that 1 = η̃−j +

∑
m≥1 ηm−j for every j. We decompose

(6.3) Sj = Sj
0 +

∑
m>0

Sj
m +

∑
m>0

Rj
m

with

Sj
0g(y, t) = 2jd

∑
t′∈Ej

∫
Rd

Kj(y, t, y
′, t′)η̃−j(y − y′)g(y′, t′)dy′

and, for m ≥ 1

Sj
mg(y, t) = 2jd

∑
t′∈Ej

|t−t′|≤2m−j+10

∫
Rd

Kj(y, t, y
′, t′)ηm−j(y − y′)g(y′, t′)dy′,
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Rj
mg(y, t) = 2jd

∑
t′∈Ej

|t−t′|>2m−j+10

∫
Rd

Kj(y, t, y
′, t′)ηm−j(y − y′)g(y′, t′)dy′.

The term Sj
0 is trivial, and the terms Rj

m and Sj
m with m > j + 10 can be seen as

error terms.

Lemma 6.1. Let 2 ≤ q ≤ ∞. For all j ≥ 0, N ≥ 0, we have the following bounds.
(i) ∥Sj

0∥Lq′ (ℓ2Ej
)→Lq(ℓ2Ej

) ≲ 2jd(1−2/q).

(ii) For m > j + 10, ∥Sj
m∥Lq′ (ℓ2Ej

)→Lq(ℓ2Ej
) ≲N 2−(j+m)N .

(iii) For m > 0, ∥Rj
m∥Lq′ (ℓ2Ej

)→Lq(ℓ2Ej
) ≲N 2−(j+m)N .

Part (i) follows from (6.1) and the Cauchy–Schwarz inequality. The proof of (ii)
and (iii) is straightforward, and based on

|Kj(y, t, y
′, t′)| ≲M

{
(1 + 2j|t− t′|)−M if |t− t′| ≥ 2|y − y′|
(1 + 2j|y − y′|)−M if |y − y′| ≥ 2|t− t′|

for any M > 0, which is obtained using integration-by-parts. We omit the details.
The main contribution comes from the terms Sj

m with m ≤ j + 10.

Lemma 6.2. Let 2 ≤ q ≤ ∞ and

λj,m = 2jd(1−
2
q
)2−m(d−1)( 1

2
− 1

q
) sup
|I|=2m−j

N(E ∩ I, 2−j)
2
q .

For m ≤ j + 10,

(6.4) ∥Sj
mg∥Lq(ℓ2Ej

) ≲ λj,m∥g∥Lq′ (ℓ2Ej
).

Proof. By interpolation, it suffices to show (6.4) for q = 2 and q = ∞.
Case 1: q = ∞. After changing to polar coordinates, write (2π)d2−jdSj

mg(y, t) as
(6.5)∑

t′∈Ej

∫
Rd

∫ ∞

0

∫
Sd−1

|φ(r)|2rd−1ei2
jr[(t−t′)+⟨y−y′,θ⟩]g(y′, t′)ηm−j(y − y′)dσ(θ)dr dy′

with dσ denoting the normalized surface measure on Sd−1. It is well-known [Ste93]
that ∫

Sd−1

ei⟨y,θ⟩ dσ(θ) =
∑
±

e±i|y|b±(y)

for smooth symbols b± satisfying ∂αb±(w) ≲α |w|− d−1
2

−|α| for |w| ≥ 1 and α ∈ Nd
0.

Then (6.5) becomes∑
±

∑
t′∈Ej

∫
Rd

∫ ∞

0

b±(2
jr(y− y′))|φ(r)|2rd−1ei2

jr[(t−t′)±|y−y′|]g(y′, t′)ηm−j(y− y′)dr dy′.
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Integrating by parts in r, we estimate

2−jd|Sj
mg(y, t)| ≲ 2−m d−1

2

∑
±

∑
t′∈Ej

∫
Rd

(
1 + 2j

∣∣t− t′ ± |y − y′|
∣∣)−N |g(y′, t′)|dy′

for any N > 0. For fixed y, the ℓ2(Ej) norm in t of this expression is bounded by

2−m d−1
2

∑
±

∫
Rd

(∑
t∈Ej

∣∣∣ ∑
t′∈Ej

(
1 + 2j

∣∣t− t′ ± |y − y′|
∣∣)−N

g(y′, t′)
∣∣∣2)1/2

dy′

≲ 2−m d−1
2

∑
±

∫
Rd

( ∑
t′∈Ej

|g(y′, t′)|2
)1/2

dy′

where we applied Schur’s test on the 1-separated set {2jt : t ∈ Ej}. Combining
the above we get

|Sj
mg(y, ·)|ℓ2Ej

≲ 2jd2−m d−1
2 ∥g∥L1(ℓ2Ej

)

which yields (6.4) with q = ∞.
Case 2: q = 2. Using the Fourier inversion theorem for ηm−j(y − y′) we write

Sj
mg(y, t) =

1

(2π)d

∫
Rd

η̂(ω)ei2
j−m⟨y,ω⟩

∑
t′∈Ej

|t−t′|≤2m−j+10

T j
t (T

j
t′)

∗[g(·, t′)e−i2j−m⟨y′,ω⟩]dω.

In view of the rapid decay of η̂(ω), the inequality (6.4) for q = 2 follows via
Minkowski’s inequality from
(6.6)∥∥∥( ∑

t′∈Ej

∣∣∣ ∑
t∈Ej

|t−t′|≤2m−j+10

T j
t (T

j
t′)

∗[g(·, t′)]
∣∣∣2)1/2∥∥∥

2
≲ sup

|I|=2m−j

N(E ∩ I, 2−j)∥g∥L2(ℓ2Ej
).

For µ ∈ Z we let Iµ = [µ2m−j, (µ+ 1)2m−j]. The left-hand side above is equal to(∑
µ

∑
t∈Ej∩Iµ

∫
Rd

∣∣∣ ∑
t′∈Ej

|t−t′|≤2m−j+10

T j
t (T

j
t′)

∗[g(·, t′)](y)
∣∣∣2 dy

) 1
2

≲
( ∑

(µ,µ′)
|µ−µ′|≤211

N(Ej ∩ Iµ′ , 2−j)
∑

t∈Ej∩Iµ

∑
t′∈Ej∩Iµ′

∫
|T j

t (T
j
t′)

∗[g(·, t′)](y)|2 dy
) 1

2

≲ sup
|I|=2m−j

N(E ∩ I, 2−j)
1
2

( ∑
t′∈Ej

∑
t∈Ej

|t−t′|≲2m−j

∥g(·, t′)∥22
)1/2

≲ sup
|I|=2m−j

N(E ∩ I, 2−j)∥g∥L2(ℓ2Ej
)

where we have used Cauchy–Schwarz in the first inequality and ∥T j
t ∥2→2 = 1 in

the second inequality. Thus (6.6) follows. This finishes the proof of Lemma 6.2.□
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Proof (of Theorem 1.6, upper bounds). As discussed at the beginning of this sec-
tion, the inequality (1.12) follows from (6.2). To prove the latter, we use the
decomposition (6.3) and the triangle inequality. By Lemma 6.1

∥Sj
0g∥Lq(ℓ2Ej

) +
∑

m≥j+10

∥Sj
mg∥Lq(ℓ2Ej

) +
∑
m≥0

∥Rj
mg∥Lq(ℓ2Ej

) ≲ 2jd(1−
2
q
)∥g∥Lq′ (ℓ2Ej

)

Since ν♯
E(α) ≥ α, we have 2jd(1−

2
q
) ≤ 2j(d+1)( 1

2
− 1

q
)2

2j
q
ν♯E( d−1

2
( q
2
−1)) = 22jsE(q) and thus

the above bound is admissible towards proving (6.2).
We next turn to the terms Sj

m with m < j + 10. By the definitions of λj,m, ν♯
E

and sE(q) we get for ε > 0

λj,m ≤ 2j(d+1)( 1
2
− 1

q
)
[

sup
|I|=2m−j

|I|−(d−1)( q
2
−1)N(E ∩ I, 2−j)

] 2
q

≲ε 2
j(d+1)( 1

2
− 1

q
)2

2j
q
(ν♯E( d−1

2
( q
2
−1))+ε) ≤ 2j(2sE(q)+ε).

Thus, by Lemma 6.2 we obtain for s > sE(q)∑
m≤j+10

∥Sj
mg∥Lq(ℓ2Ej

) ≲ε (1 + j)2j(2sE(q)+ε)∥g∥Lq′ (ℓ2Ej
) ≲s 2

2js∥g∥Lq′ (ℓ2Ej
)

which concludes the proof of (6.2). □

The above argument can also recover a sharper L2 → Lq result for the square-
function associated with a set of given Assouad dimension that was previously
proved independently by Wheeler [Whe24+], and by the first, second and fourth
author (unpublished). Recall that dimAE is the infimum over all exponents a
such that N(E ∩ I, δ) ≤ Ca(|I|/δ)a holds for all δ ∈ (0, 1) and all intervals I with
δ ≤ |I| ≤ 1.

Proposition 6.3. Let 2 ≤ r ≤ q < ∞, γ◦ = dimA E and q◦ =
2(d−1+2γ◦)

d−1
.

(i) For q > q◦, ∥∥∥(∑
t∈Ej

|e−it
√
−∆Pjf |r

)1/r∥∥∥
q
≲ 2jd(

1
2
− 1

q
)∥f∥2.

(ii) Suppose sup0<δ<|I|≤1

(
δ
|I|

)γ◦
N(E ∩ I, δ) < ∞. Then∥∥∥(∑

t∈Ej

|e−it
√
−∆Pjf |r

)1/r∥∥∥
Lq◦,∞

≲ 2jd(
1
2
− 1

q◦
)∥f∥2.

Proof. It suffices to show the r = 2 case.
For part (i) we have λj,m ≲ε 2

jd(1− 2
q
)2−m((d−1)( 1

2
− 1

q
)− 2γ◦

q
+ε) and thus

(6.7) ∥Sj
mg∥Lq(ℓ2Ej

) ≲ε 2
jd(1− 2

q
)2−m((d−1)( 1

2
− 1

q
)+ 2γ◦

q
+ε)∥g∥Lq′ (ℓ2Ej

).

Observe that (d− 1)(1
2
− 1

q
)− 2γ◦

q
> 0 for q > q◦, hence we may sum in m ≤ j + 10

in this range and get part (i) by the usual TT ∗ argument used above.
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For part (ii), we use the stronger assumption N(E ∩ I, δ) ≲ (δ/|I|)−γ◦ to get
(6.7) with ε = 0. Then Bourgain’s interpolation trick [Bou85; CSWW99] yields∥∥∥ ∑

m≤j+10

Sj
mg

∥∥∥
Lq◦,∞(ℓ2Ej

)
≲ 2jd(1−

2
q◦

)∥g∥
Lq′◦,1(ℓ2Ej

)
.

Now part (ii) follows again by a TT ∗ argument, using duality for vector-valued
Lorentz spaces. □

ACKNOWLEDGEMENTS

D.B., J.R. and A.S. were supported through the program Oberwolfach Research
Fellows by Mathematisches Forschungsinstitut Oberwolfach in 2023. D.B. was
supported in part by the AEI grants RYC2020-029151-I and PID2022-140977NA-
I00. J.R. was supported in part by NSF grant DMS-2154835. J.R. also thanks the
Hausdorff Research Institute for Mathematics in Bonn for providing a pleasant
working environment during the Fall 2024 trimester program. A.R. was supported
by Tuomas Orponen’s grant from the Research Council of Finland via the project
Approximate Incidence Geometry, grant no. 355453. A.S. was supported in part
by NSF grant DMS-2348797.

REFERENCES

[AHRS21] T. Anderson, K. Hughes, J. Roos, and A. Seeger. Lp → Lq bounds for
spherical maximal operators. Math. Z. 297 (2021), 1057–1074.
zbl:1461.42012.

[BFKR24+] A. Banaji, J. M. Fraser, I. Kolossváry, and A. Rutar. Assouad spectrum of
Gatzouras-Lalley carpets. Preprint. arxiv:2401.07168.

[BHS21] D. Beltran, J. Hickman, and C. D. Sogge. Sharp local smoothing estimates for
Fourier integral operators. In: Cham: Springer, 2021, 29–105.
zbl:1494.42013.

[BOR+22] D. Beltran, R. Oberlin, L. Roncal, A. Seeger, and B. Stovall. Variation bounds
for spherical averages. Math. Ann. 382 (2022), 459–512. zbl:1487.42022.

[BRS24+] D. Beltran, J. Roos, and A. Seeger. Spherical maximal operators with fractal sets
of dilations on radial functions. Preprint. arxiv:2412.09390v1.

[BS22] D. Beltran and O. Saari. Lp-Lq local smoothing estimates for the wave equation
via k-broad Fourier restriction. J. Fourier Anal. Appl. 28 (2022), 29.
zbl:1498.35130.

[Bou85] J. Bourgain. Estimations de certaines fonctions maximales. C. R. Acad. Sci.
Paris Sér. I Math. 301 (1985), 499–502.

[BD15] J. Bourgain and C. Demeter. The proof of the l2 decoupling conjecture. Ann.
Math. 182 (2015), 351–389. zbl:1322.42014.

[CSWW99] A. Carbery, A. Seeger, S. Wainger, and J. Wright. Classes of singular integral
operators along variable lines. J. Geom. Anal. 9 (1999), 583–605.
zbl:0964.42003.

https://zbmath.org/1461.42012
https://arxiv.org/abs/2401.07168
https://zbmath.org/1494.42013
https://zbmath.org/1487.42022
https://arxiv.org/abs/2412.09390v1
https://zbmath.org/1498.35130
https://zbmath.org/1322.42014
https://zbmath.org/0964.42003


22 D. BELTRAN, J. ROOS, A. RUTAR, & A. SEEGER

[CHL17] C.-H. Cho, S. Ham, and S. Lee. Fractal Strichartz estimate for the wave
equation. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods
150 (2017), 61–75. zbl:1355.35005.

[CCS02] A. Cominardi, L. Colzani, and K. Stempak. Radial solutions to the wave
equation. Ann. Mat. Pura Appl. 181 (2002), 25–54. zbl:1072.35106.

[Fra20] J. M. Fraser. Assouad dimension and fractal geometry. Camb. Tracts Math. 222.
Cambridge: Cambridge University Press, 2020. zbl:1467.28001.

[FY18] J. M. Fraser and H. Yu. New dimension spectra: finer information on scaling and
homogeneity. Adv. Math. 329 (2018), 273–328. zbl:1390.28019.

[GWZ20] L. Guth, H. Wang, and R. Zhang. A sharp square function estimate for the cone
in R3. Ann. Math. 192 (2020), 551–581. zbl:1450.35156.

[HKL22] S. Ham, H. Ko, and S. Lee. Circular average relative to fractal measures.
Commun. Pure Appl. Anal. 21 (2022), 3283–3307. zbl:1505.35259.

[HNS11] Y. Heo, F. Nazarov, and A. Seeger. Radial Fourier multipliers in high
dimensions. Acta Math. 206 (2011), 55–92. zbl:1219.42006.

[IKS+19] A. Iosevich, B. Krause, E. Sawyer, K. Taylor, and I. Uriarte-Tuero. Maximal
operators: scales, curvature and the fractal dimension. Anal. Math. 45 (2019),
63–86. zbl:1438.11108.

[LX16] F. Lü and L.-F. Xi. Quasi-Assouad dimension of fractals. J. Fractal Geom. 3
(2016), 187–215. zbl:1345.28019.

[Miy80] A. Miyachi. On some estimates for the wave equation in Lp and Hp. J. Fac. Sci.,
Univ. Tokyo, Sect. I A 27 (1980), 331–354. zbl:0437.35042.

[MS95] D. Müller and A. Seeger. Inequalities for spherically symmetric solutions of the
wave equation. Math. Z. 218 (1995), 417–426. zbl:0828.35072.

[MS01] D. Müller and A. Seeger. Regularity properties of wave propagation on conic
manifolds and applications to spectral multipliers. Adv. Math. 161 (2001),
41–130. zbl:1027.58022.

[Obe06] D. M. Oberlin. Packing spheres and fractal Strichartz estimates in Rd for d ≥ 3.
Proc. Am. Math. Soc. 134 (2006), 3201–3209. zbl:1120.28006.

[Per79] J. C. Peral. Lp estimates for the wave equation. English. 1979.
zbl:0423.35057.

[Roc97] R. T. Rockafellar. Convex analysis. Princeton, NJ: Princeton University Press,
1997. zbl:0932.90001.

[RS23] J. Roos and A. Seeger. Spherical maximal functions and fractal dimensions of
dilation sets. Am. J. Math. 145 (2023), 1077–1110. zbmath:07732556.

[Rut24] A. Rutar. Attainable forms of Assouad spectra. Indiana Univ. Math. J. 73
(2024), 1331–1356. zbmath:07937992.

[SSS91] A. Seeger, C. D. Sogge, and E. M. Stein. Regularity properties of Fourier
integral operators. Ann. Math. 134 (1991), 231–251. zbl:0754.58037.

[Sog91] C. D. Sogge. Propagation of singularities and maximal functions in the plane.
Invent. Math. 104 (1991), 349–376. zbl:0754.35004.

https://zbmath.org/1355.35005
https://zbmath.org/1072.35106
https://zbmath.org/1467.28001
https://zbmath.org/1390.28019
https://zbmath.org/1450.35156
https://zbmath.org/1505.35259
https://zbmath.org/1219.42006
https://zbmath.org/1438.11108
https://zbmath.org/1345.28019
https://zbmath.org/0437.35042
https://zbmath.org/0828.35072
https://zbmath.org/1027.58022
https://zbmath.org/1120.28006
https://zbmath.org/0423.35057
https://zbmath.org/0932.90001
https://zbmath.org/07732556
https://zbmath.org/07937992
https://zbmath.org/0754.58037
https://zbmath.org/0754.35004


FRACTAL LOCAL SMOOTHING 23

[Ste93] E. M. Stein. Harmonic analysis. Real-variable methods, orthogonality, and
oscillatory integrals. With the assistance of Timothy S. Murphy. Vol. 43.
Princeton Math. Ser. Princeton, NJ: Princeton University Press, 1993.
zbl:0821.42001.

[SW71] E. M. Stein and G. Weiss. Introduction to Fourier analysis on Euclidean spaces.
Vol. 32. Princeton Math. Ser. Princeton University Press, Princeton, NJ,
1971. zbl:0232.42007.

[Str77] R. S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and
decay of solutions of wave equations. Duke Math. J. 44 (1977), 705–714.
zbl:0372.35001.

[Whe24+] R. Wheeler. Variation bounds for spherical averages over restricted dilates.
Preprint. arxiv:2409.05579v1.

[Wol00] T. Wolff. Local smoothing type estimates on Lp for large p. Geom. Funct. Anal.
10 (2000), 1237–1288. zbl:0972.42005.

David Beltran
Departament d’Anàlisi Matemàtica, Universitat de València, Burjassot, Spain
Email: david.beltran@uv.es

Joris Roos
Department of Mathematics and Statistics, University of Massachusetts Lowell,
Lowell, MA, USA
Email: joris_roos@uml.edu

Alex Rutar
Department of Mathematics and Statistics, University of Jyväskylä, Finland
Email: alex@rutar.org

Andreas Seeger
Department of Mathematics, University of Wisconsin–Madison, Madison, WI, USA
Email: aseeger@wisc.edu

https://zbmath.org/0821.42001
https://zbmath.org/0232.42007
https://zbmath.org/0372.35001
https://arxiv.org/abs/2409.05579v1
https://zbmath.org/0972.42005
mailto:david.beltran@uv.es
mailto:joris_roos@uml.edu
mailto:alex@rutar.org
mailto:aseeger@wisc.edu

	Introduction
	The Legendre–Assouad function
	Lower bounds in Theorem 1.1
	Lower bounds for the conjecture
	Upper bounds in Theorem 1.1
	Upper bounds in Theorem 1.6
	Acknowledgements
	References

