A fractal local smoothing problem
for the wave equation
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ABSTRACT. For any given set £ C [1,2], we discuss a fractal frequency-
localized version of the L? local smoothing estimates for the half-wave prop-
agator with times in E. A conjecture is formulated in terms of a quantity
involving the Assouad spectrum of £ and the Legendre transform. We val-
idate the conjecture for radial functions. We also prove a similar result for
fractal-time L? — L7 and square function bounds, for arbitrary L? functions
and general time sets. We formulate a conjecture for L? — L? generalizations.

1. INTRODUCTION

Consider the half-wave propagator
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initially defined for Schwartz functions f, where f(¢) = Jga [ (y)e~ ) dy denotes
the Fourier transform. It is well-known since the work of Miyachi [ ] and
Peral [ ] that for fixed time ¢ > 0 and 2 < p < oo, there exists a locally
bounded constant C; > 0 such that
(L1) 2 Fllion < Cilfllzz, o, sp=(@d=1)(5 —3).

Here L? denotes the usual LP-Sobolev space. The result is sharp in the sense that
s, cannot be replaced by a smaller number. The local smoothing problem for the
wave equation, proposed by Sogge [ ], aims to establish sharp space-time
LP-Sobolev estimates for ¢V~ where t € [1,2]. In particular, one aims to gain
derivatives over (1.1) and conjectures that for all 2 < p < oo and all € > 0 there
exists a constant C. > 0 such that

2 1 0 if2 <p< 2L
(1.2) (/ le™ =2 F|Ip dt) < Cellfllee .o op = {S 1 o
1 P
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The first result of this kind was proved by Wollff [ ] for large values of p. In
two dimensions, Sogge’s conjecture was recently established for all 2 < p < oo
by Guth, Wang and Zhang [ ].In[ ] it was also conjectured that for
p > 2% the inequality (1.2) should hold even with € = 0, and this endpoint result

22‘1__31), d > 4. For d > 3, the current best result with the s-loss

was verified for p >
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corresponds to the range p > %, which was proved by Bourgain and Demeter
[ ]. We refer to the survey [ | for further history of the problem. The
LP-bound also implies an inequality with L? (L2 ;) in place of L?(R?); the version
of Sogge’s conjecture in this category was proved in [ I

In this paper, we introduce a fractal version of the local smoothing problem,
which we validate in the radial case. To formulate it, we first note that (1.2) can
be rewritten in a discretized form when frequency localized to an annulus of
frequencies ~ 27 where j > 1. Define P; = »(277|D|) where ¢ is a smooth bump
function supported in the interval (3, 4). Then a version equivalent to (1.2) with
e > Ois that forall 2 < p < co and s > max(s,, ]l?), there exists a constant C'; > 0

such that

13) (S 1ev=2R61p)" < il

teE;

where E; is a maximal 277-separated subset of [1,2]. In the fractal problem we
replace [1,2] by an arbitrary subset F, and let E; be a 2~/-discretization of E, i.e., a
maximal 277-separated subset of E. We then ask how the optimal exponent s is
determined by E.

Given any bounded E C R define the Legendre—Assouad function v%,: R — R by

log ( su IT*N(ENI,6
(1.4) Vi () = lim sup g ( Ps<|1|<1 | ’1 ( ) |
5—0 log(g)

where the supremum is taken over all intervals I of length between § and 1. The
terminology in this definition is motivated by Theorem 1.2 below. The quantity
v (@) was introduced in a study of circular maximal operators by the first, second
and fourth authors in [ ]. It turns out that for all E C [1,2], the critical
exponent in (1.3) can be expressed in terms of 1%, at least in the radial setting.
While 14 () is well-defined for all & € R, we care about the case o > 0, because
ugE(oz) = dimy £ for all a < 0, where dimy; £/ denotes the upper Minkowski

dimension of FE.

Theorem 1.1. Let E C [1,2]and 2 < p < oo. Then for every € > 0 there exist a constant
C.p > 0 such that for all j > 1 and all 277 -discretizations E; of E,

p
Lrad

. 1/ 1
(15) <Z ||€7,t\/jpjf||§> p < Ca7p2j(;VuE(psp)+5)||f

tEEj
for all radial L? functions f. Moreover, the inequality is sharp up to the e-loss.

The proof of the upper bound is fairly standard: it is a refinement of the argument
in [ ] for E = [1,2] (see also [ ]) and extends it as an essentially sharp
result for arbitrary sets £ C [1, 2]. Note that for £ = [1, 2] we have

Ljf p< 2
(1.6) Whalps,) =<7 T4
prLANTEP sp if p> 2%
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matching the exponents in the standard local smoothing conjecture (1.3). It is
reasonable to conjecture that Theorem 1.1 holds for all L? functions; this constitutes
a fractal analogue of Sogge’s conjecture for general L” functions.

The Legendre—Assouad function is closely related to the Assouad spectrum of
E, which we now recall. For 0 < # < 1 define dimy £ as the infimum over all
exponents a > 0 for which there exists a constant C' such that

N(ENI,8) < O(|1]/6)°

for all intervals I with |I| = 6% and § € (0,1) (Fraser-Yu [ ). The Assouad
spectrum is the function 6 — dim, ¢ E. At 0 = 0 we recover the upper Minkowski
dimension

B =dimy E = dimp o E.

The Assouad spectrum is continuous on [0, 1) and the limit
v =dimgs £ = lim dimp g E
0—1—

exists and is called the quasi-Assouad dimension (Li—Xi [ 1). We refer the reader
to Fraser’s monograph [ ] for further information.

The Legendre transform of a (not necessarily convex) continuous function v
defined on a closed interval / C R is defined by

(1.7) v () = supba — v(6),
ver

which is finite for all € R if I is compact. It was observed in [ ] that v/},
equals the Legendre transform of
(1.8) I/E(Q) = —(1 - 9) dimAﬂ E, 0¢ [0, 1],
under a certain regularity assumption on . We note that a certain conjugate to
the Assouad spectrum also appeared in [ I

The function v is increasing, but may not be convex (see [ ; 1). The
next theorem says that the regularity assumption in [ ] can be removed, and
combining this with the characterization of Assouad spectra by the third author
[ ] allows us to obtain a simple characterization of the class of functions

which occur as Legendre-Assouad function of some subset of [1,2]. !

Theorem 1.2. The following hold:
(i) For all bounded E C R, yﬁE =V},
(ii) A function T : [0, 00) — [0, 00) satisfies uﬁﬂho,oo) = T for some bounded set E C R
if and only if T is increasing, convex, and satisfies () = o for a > 1.

As a consequence of (i), v only depends on the convex hull of v which by convex
duality is equal to v = (v%,)*. This together with the characterization of increasing
Assouad spectra in [ , Corollary B] gives (ii). We provide the details in §2.

IThe value of %, (a) does not change under dilations and translations, so if 7 = v, for some
bounded E, then also 7 = V%/ for some E' C [1,2].
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Corollary 1.3. Let E be bounded and v = dimqs E. Then
(1.9) vha)=a if a>~
and the number ~y is minimal with this property.

Note that (1.9) was already observed in [ ]. For 0 < a <7, yﬁj(a) can be
interpreted as a new dimensional spectrum interpolating between Minkowski and
quasi-Assouad dimension. If 3 < v, then v}, (a) is strictly increasing for o > 0.

Applying (1.9) to the sharp exponent in (1.5) we obtain l/E(pSp) = s, for

p>p, = % where v = dimgs £. This 1mphes that if the standard local

24 then the correspondmg
fractal conjecture is also true for all p > p, and all E C [1, 2]. However for p < 2%,
the fractal problem dlffers from the classical one, and for general £ C [1,2] the
supercritical regime p > % in (1.6) is replaced by p > M.

In particular, we have the following.

smoothing conjecture (1.3) is known for some p, >

2(d H”) ,e>0,and

Corollary 1.4. For every E C [1,2] with vy = dimga E, p > p, =
radial f,

. 1/p .
< Z HelthJng) <C., 2J(Sp+€)HfHLfad'

teE;
The exponent is sharp up to the e-loss.

Theorem 1.2 illustrates a striking contrast to the classical local smoothing
problem: solving the fractal smoothing problem for p = p, does typically not
imply sharp estimates in the range 2 < p < p, by interpolating with p = 2.

Indeed, for this interpolation to be sharp it is necessary that

1-8)s,+2 if 2<p<p,,
(1.10) %vig(psp):{( Doty ”
Sp if p>p,.

That is, v}, consists of two affine linear pieces. But Theorem 1.2 (ii) says in particular
that the function v% need not be piecewise affine. This is the same phenomenon
observed in [ ] for the LP — L7 type sets of spherical maximal functions
(although 1%, was not mentioned explicitly there).

The interpolated exponents (1.10) occur if E is quasi-Assouad regular, that is if

its (upper) Assouad spectrum takes the form

B : _ B
(1.11) dimy B — 10 H0<0=1-0
’ yooifl-2<o<1

The equation can be interpreted as saying that the Assouad spectrum should
always achieve its largest possible value given the endpoint values 5 and +y (indeed,
dimp ¢ £ is always bounded by the right hand-side in (1.11), see [ ]). Examples
include all cases where 3 = « (such as self-similar Cantor-type sets), and convex
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sequences E = {1+n"" : n > 1} witha > 0, where 3 = (a+ 1)~ and v = 1. For
other examples see [ ; ]. The simplest examples where (1.10) fails are of
the form £ = E, U --- U Ej, with Ey, ..., B}, quasi-Assouad regular.

Then

Vi = maX(VﬁEl, ce y%k)

Remark 1.5. The above definition of quasi-Assouad regular sets is equivalent to
that introduced in [ ] (see [ , Corollary C] for the equivalence).

The Legendre—Assouad function is also relevant for other related estimates
with a fractal feature (e.g. circular maximal functions [ 1). As a further
example we prove certain Strichartz type estimates for ¢?*V~2 with fractal sets
of times E C [1,2]. In this case we obtain a result valid for all L?>-functions (not
necessarily radial).

Theorem 1.6. Let £ C [1,2],2 <r < g < oo and

s>sp(q) =G -1+ WL (5E - ).

Then there exists a constant Cy , > 0 such that for all f € L?
4 1/r .
(1.12) (X le=2psr) 7| < 2l
tek;

Moreover, if s < sg(q) this conclusion fails to hold.

The critical exponent sg(q) does not depend on r. Thus the upper bound
follows from the case » = 2. The corresponding square function is relevant to
variation bounds for spherical averages: for recent results and further references

see [ [ ]. The proof of the upper bounds in Theorem 1.6 is based on
familiar 77 arguments; it can be seen as a refinement of a result in [ ] for
r = q. We note that it is mainly interesting for usin therange 2 < ¢ < ¢, = %,

with v = dimg E. Since 1% (a) = a for a >  and since £1(2 —1) > vif and only

if ¢ > ¢,, we see that the operator norm in (1.12) is <, . 9 dl5 =)t for q>q,. If
one replaces the quasi-Assouad dimension « by the Assouad dimension a stronger
result for ¢ > ¢, can be proven with ¢ = 0: see Proposition 6.3 below.

The case » = ¢ in Theorem 1.6 is a specific case of a more general L — L4
fractal local smoothing conjecture.

Conjecture 1.7. Let £ C [1,2]and 1 < p < q < oo, ¢ > p'. Then for every s >
f;l;(tp, q) =G o)+ %uﬁf(@(l — +— 1)), there exists a constant C; , , > 0 such
a

1
(1™ 2Pire) " < Copa2”Il 11,

tGEj

holds for all j > 1 and all 2~I-discretizations E; of E.
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It will be shown in Proposition 4.1 that sz (p, ¢) cannot be replaced by a smaller
value. We note that s5(2,q) = sg(¢) in Theorem 1.6, and thus the conjecture is
verified for p = 2. For ¢ = p, we note that sg(p,p) = I%z/ﬁ; (psp), which matches
the exponent in Theorem 1.1 and the corresponding conjecture for general L?-
functions. For E = [1, 2], one recovers the numerology in [ , Conjecture 1.1]
and for £ = {t,} C [1,2], it coincides with the numerology of the fixed-time
LP — L1 estimate, which follows from interpolating (1.1) with the standard bound
He“ijHLl_woo < 213", Note that sp(p,q) = sq + % — % for ¢ > p’d_dl%% and all
E C [1,2]. Under this condition, the case ¢ = p of the above conjecture implies
the ¢ > p case by interpolation with the L! — L* bound, similarly to the case
E = [1,2]. However, this is not generally true if ¢ < p’*~*2Y and E C [1,2] is
arbitrary.

Remark 1.8. Different types of fractal space-time problems for the wave equation
or spherical means have been considered in the literature, see for example [ ;

; ; ; ]. These authors put a fractal measure y on space-
time Rd x R and ask for corresponding LP(R?) — L9(u) estimates, using some
notion of Hausdorff dimension for the measure u. See also Wheeler [ ]
where Corollary 1.4 is conjectured for all f € L? in the case when the Minkowski
and Assouad dimensions of £ coincide. Many interesting questions arise.

Notational conventions. Given a list of objects L and real numbers A, B > 0, here
and throughout we write A <, B or B 2; A to indicate A < C1B for some
constant C';, which depends on only items in the list L. We write A ~; B to
indicate A <y, B and B 51, A. We say that a real-valued function f on the real line
is increasing (as opposed to non-decreasing) if f(z) < f(y) whenever z < y are in
its domain.

Structure of the paper. In §2 we discuss properties of 1%, and prove Theorem 1.2. In
§3 we prove sharpness of Theorem 1.1. In §4 we prove sharpness of Theorem 1.6
and motivate the numerology in the L? — (%, (L?) conjecture. In §5 we prove the
upper bounds in Theorem 1.1 and in §6 we projve the upper bounds in Theorem 1.6.

2. THE LEGENDRE—-ASSOUAD FUNCTION

In this section we prove Theorem 1.2 and Corollary 1.3. Let us first recall some
basic facts about the Legendre transform. Let v: I — R be a continuous function
that is not necessarily convex, defined on a closed interval / C R. Its Legendre
transform v* (defined by (1.7)) is always convex, as a supremum of affine functions,
and a basic fact is convex duality: the function v** = (v*)* is the convex hull of v,
i.e. it is the largest convex function bounded above by v. In particular, we have
v = v™ if and only if v is convex. Note that here we adopt the convention to
extend v to a function on R by setting v(#) = oo for § ¢ I, so that both v and v* are
defined on all of R. More details can be found ine.g. [ ].
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Proof (of Theorem 1.2, (i)). Let yg(#) = dimy o £ and

sup|yj—ge log N(EN I, 6)
(1-0)log(3)

Qp(év 8) =

Then the claim can be rewritten as

(2.1) limsup sup fa + (1 —0)p(0,0) = max o + (1 — 0)vg(0).
5—0  0€[0,1] 0€[0,1]

Fix a > 0. We first prove the lower bound in (2.1). Since the Assouad spectrum
is continuous, there exists 6, € [0, 1] such that the right-hand side of (2.1) equals

(22) 90405 + (1 - ea)PYE(ea)'

By taking 6 = 0, in the supremum,

limsup sup fa + (1 —0)p(6,0) > 0, + (1 — 0,) limsup (4, 0,,),
d—0  0€[0,1] 0—0

which is equal to (2.2), concluding the proof of the lower bound.
To prove the upper bound let ¢ > 0. Let (,,) be a monotone sequence converg-
ing to zero so that the left-hand side of (2.1) equals

lim sup Oa+ (1 —6)p(d,,0).

N0 ge(0,1]
By definition of the supremum, for every n € N there exists 6,, € [0, 1] such that

(2.3) sup fa+ (1 —0)p(d,,0) < Opa+ (1 —6,)p(0n,0,) + €.
0€l0,1]

By passing to a subsequence we may assume that (6,,) converges to a limit ¢, €
[0, 1]. By continuity of 6 — (1 — 0)yg(0) at 6, we may choose a value 0, = 0, (¢) in
[0,6.) close to 6. so that

(2.4) (1=0.)ve(0,) < (1 —0.)ve(0.) + .
Further since 0,, — 0, there exists IV, so that for all n > N, we have

(2.5) 0, >0

*

and 0,a <0,a+e¢.
Then there exists a constant C, > 0 such that

(2.6) sup N(EN1,6,) < sup N(ENI,) < C.o,1-0)eb)-e

for n > N, (using 6,, > ¢, in the first inequality and the definition of Assouad
spectrum in the second). Hence, for n > N,

(1= 00)p(0n, 0n) < 0255 + (1 — 0, )ym(62) + e

log(5-)
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By making N. larger if needed we may also assume log(C;)/log(1/4,) < ¢ for all
n > N.. Then from (2.4) and (2.6)

(1= 0n)p(0n, 0n) < (1 =0, )v6(0,) + 2e < (1 —0.)vp(0,) + 3¢
for n > N.. Combining this with (2.3) and (2.5) we conclude

sup Oa+ (1 —0)p(d,,0) < b.a+ (1 —0,)ve(bs) + 5e

0€l0,1]
< 0 1 —0)ve(0) + Se.
< max fo+ (1= 0)ys(0) + 5
Since € > 0 was arbitrary this concludes the proof. O

Proof (of Theorem 1.2, (ii)). By part (i), v is convex, because it equals the Legen-
dre transform of vg. It is increasing since § > 0 in the maximum in (2.1). Finally,
if @ > 1, then v4(a) = a: the lower bound always holds by taking § = 1 and the
upper bound follows from dimy g £ < 1 and o > 1.

To show the converse, let 7: [0, 0c0) — [0, 00) be increasing, convex and 7(a) = «
for @ > 1. Note that 7(a)) > «a for all a € [0, 00) by convexity and assumption.
Define the function v: [0, 1] — R by

v(0) = 7°(0) = sup ab — 7(«)

a>0

for 0 < # < 1. (Note 7*(0) is defined for all # < 1.) Note that v(1) = 0 since
a < 71(a)and 7(1) = 1. For 6 € (0, 1) define

—v(9)

(2.7) v(0) = R

We now use the characterization of the class of increasing functions that are
attainable as the Assouad spectrum of a bounded set £ C R from [ , Corol-
lary B]. It states that if v: (0,1) — [0, 1] is an increasing function such that

0= v(0) = —(1-0)y(0)

is increasing on (0, 1), then ~ is the Assouad spectrum of a bounded subset £ C R.

Let us verify these assumptions for y as defined in (2.7). First, v is increasing
because v = 7* is convex; indeed, since (1) = 0, we have v(6t + (1 —t)) < tv(0)
forall¢,6 € [0, 1]. Second, v is increasing because the supremum in its definition
is taken over a > 0. Finally, v takes values in the interval [0, 1]: the inequality
v(0) > 0 follows because v(1) = 0 and v is increasing, and the inequality v(¢) < 1
is equivalent to 7*(f) > 6 — 1 which holds because 7(1) = 1 (take « = 1 in
the supremum defining 7*). Thus, we obtain a bounded E with vz = v, where
vp(f) = —(1 —0) dimy o £ as in (1.8). By part (i) of Theorem 1.2 and convex duality,

* k%

i ok ok _
Vp=Vp=V =T =T

which concludes the proof. 0
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Proof (of Corollary 1.3). Let yg(6) = dimp ¢ E, v = dimga E. By Theorem 1.2 (i),

(2.8) vh(a) = sup af + (1 — 0)yp(0).
0€[0,1]

First note that 1/4,(a) > « for all @ € R by taking 6 = 1 in the supremum. If o > ,
then v%,(a) < a holds also by using v5(6) < . To show the minimality claim
suppose vh(a) > a. It then suffices to show that o < 7. By continuity of the
Assouad spectrum, for every a € R there exists 6, € [0, 1] where the supremum
in (2.8) is attained. Since vg(6,) < 7 we obtain a < 1/%(04) < ab, + (1 —106,)y,

equivalently (1 — 6,)a < (1 —6,)y and 0, # 1. Thus a < v, as required. O

3. LOWER BOUNDS IN THEOREM 1.1

In this section we test the half-wave operator on suitable radial functions to show
the (essential) sharpness of Theorem 1.1. Let I C [1,2] be an interval of length
|I|] > M2~ containing points in E;, with M > 1 a sufficiently large constant
chosen below. It suffices to prove that

(3.1) sup > [V Rglh 2 N(ENT,27)| 1]

||g||17§1 tEEij

By the definition of v/ in (1.4), this implies that (1.5) is sharp up to the e-loss.

To this end, let I’ be a subinterval of I with length |I|/2 such that N(ENI’,§) >
IN(EN1,6) and let ¢; be the boundary point of I such that dist(t;, I') > |I|/4;
without loss of generality, we assume that ¢; is the left endpoint.

Consider the radial function g; given by

gi(¢) = e "Rlp(27)¢))
where ¢ is a nonnegative bump function on (1/2, 2). We first observe

d+1 1
o)

(32) lgrll, < 2"

~

Indeed from Plancherel’s theorem ||g;||» < 2/¢/2. For an L>® bound we observe first
that a multiple integration-by-parts yields |g;(z)| = O(1) for |z| < 1/2 and |z| > 3.
For 1/2 < |z| < 3 we use the Fourier inversion formula for radial functions [ ,
§IV.3]

g1(x) = (2m) ™" / e p(27s) Jua (s]a]) (sla]) =7 5" ds.
0 2
Recall also from | , §IV.3] the well-known asymptotics for |u| > 1,
(3.3) Ja2 (u) = (e’i(“’%(d’m + ei(“’g(d’”)) (27mu) Y2 + R(u)

where |R(u)| = O(|u|7%/2) for |u| > 1. From this we see that |g;(z)| < 2/(@*+1/2,
which is also the bound for ||g/||se. Thus (3.2) follows using ||gl, < [lg/12/||gll4 >/
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for 2 < p < co. We note that by a slightly more careful argument one can show the
pointwise bound |g;(z)| <y 27F (1 4 27 ||z| — t;])~ which also gives (3.2).

We now turn to lower bounds for ||¢?V=2g;|,. Again by the Fourier inversion
formula for radial functions we have

N Tgr() = (2m) 2 [ @) o sl o) s
0
Then, for |z| > 2772 we can write using (3.3)
(34) ™ Bgi(x) = Ty gi(x) + T} gr(w) + T, g (x),
where

Fig(d-1) oo ' )
o) = WMW / el (9775)s " dis
i 0

and the remainder term is given by

T gy(2) = |a| =7 / Rilx]s)p(277s)s? ds.
0

Givent € E;NI',let J, = [t—t;—2777° t—t;+2777°],and define D; = {z : |z| € J;}.
We will examine each of the terms in (3.4) for x € D;.
If x € D,, then

d+1

Ty g1(2)] 2 o5 / p(2795)s T ds > o] T 204
0

Consequently,
d+1

1 .
G ooy 2 2% ( [ N ar) 2 2R B
Ji

using thatif r € J;, thenr ~ [t —t;| ~ |I].
For the term 7,", we have by repeated integration-by-parts,

27
(1+20(ja| +t —t)"

T, g1(2)| Sw |2

forany N > 0. Thus

. 1 1/p
+ < Jﬂ< —(d—1)(Z-1) >
1T grlleroy <22 h BT dr

‘[lf(dfl)(%*%)(gj‘[D—N/put‘% < M—12j(%*%)‘[|*(d*1)(é*%)

3.6) <2E
using that r ~ |I| for r € J;, |J;| ~ 277, (27|I|) > M and choosing N > p. For the
remainder term we have for x € D,,

(d+1) (d+1) d+1

/ (277 )s B ds<|x|_7 2277,
0

T gr ()] S a2
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Then

1
T2 gil| oy S 27 </ p (DG, dr)p
Jt

d+1

(3.7) < 2 [T UDG 1Y g, < MRS )| TG )

since r ~ |I| forr € Iy and |I;| ~ 277, (27]I|) > M. From (3.6) and (3.7) we obtain,
with a sufficiently large choice of M,

T il ooy + 1T 91| 2o (D)) < §||Tt gillzr(py)-

Combining this with (3.4) and the lower bound (3.5) for 7, and taking the ¢?
normint € E; NI we get

1/p
(3 1™ 2grltp,) " 22V IN(EA 27

teE;NI’

here we used that N(E N I',277) > IN(EN1,277). Since |gr]l, S 215 =3) we
obtain the desired lower bound (3.1).

4. LOWER BOUNDS FOR THE [P — K?Ej(Lq) CONJECTURE

We construct counterexamples motivated by the examples for maximal operators
in [ Al ]. These are associated to spherical pieces intermediate between
spherical Knapp caps and full spheres. However, here we choose a sectorial
localization on the Fourier side.

Proposition 4.1. Let 1 < p < 00, ¢ > p'. Then there exist constants c(q) and p < 1
such that for all intervals I with 29 > 29|I| > p~*

1

d+1,1
Y 1 sN(ENT,277)i27 %5 Ga)
an s (1) 2 et ™ r .

d—1 1 1
a—Lln_L1_1
IFlp<1 e, 1] (1=5-2

The case p = 2 in the proposition shows that in Theorem 1.6 the critical sg(q)
cannot be replaced by a smaller value for » = g, which implies the same conclusion
for 2 < r < ¢ by the nesting of the ¢" spaces. The case for general p, ¢ shows that in
Conjecture 1.7 the exponent sg(p, ¢) cannot be replaced by a smaller one.

Proof (of Proposition 4.1). Let m € N be such that 2™ < p~' and j > m and let I
be an interval of length 2™~7 < || < 2™ %1 Let I’ be a subinterval of I such that
|I'| = p|I|and N(ENTI',277) > pN(EN1,279). Lett; € I'N E;.

Let v be a nonnegative C2°(B(0, 1)) function such that v = 1 in a neighborhood
of the origin. Define f; € L? by its Fourier transform via

71(©) = @m) (27 leo(2F (§ — ex))e kL
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We first show that
(4.2) Ifill, S 25 Do

We use a standard argument from [ ] and decompose the Fourier transform
into pieces supported on sectors of angular width O(277/2). For this decomposition

split variables as £ = (&,¢’) and note that on the support of f; we have & ~ 27
and |¢/| < 27™/2¢;. Choose Y € C*(R?!) supported in (—1,1)%"! such that
> ez X(§ —3) =1forall ' € R?-1. Then we write f; = >, f1; where

Fra(€) = @m)te (277 g Ju(2% (§ — e)x(272E — 5).
An integration-by-parts argument in [ ] gives

27 97 (d=1)/2
(1+ 27|z, e5) =t DN (1 + 2972 |mi )N

(4.3) [frs(@)] SN

(1,279/2%)
and 7;" is the orthogonal projection to the orthogonal comple-
V14277 Ial2

ment of Re,. Here we use that |(e;, >NU(2m(|£| e1))| Sy 277N for [279/23] < 272
and also |<637V>NX(2j/2§—; —3)| Sy 277N forall N > 0.

One computes that || f7;[; = O(1). In view of the support properties of f;
the sum Z fl , extends over O(2"2"(@=V) contributing terms and thus we get

where ¢, =

£l < 277 @Y which is (4.2) for p = 1. Regarding p = oo, we clearly have

1 f14ll0 = 0(23 +). However note that ¢; ~ 1 and the vectors t;e, are ¢277/2-
separated, and thus one can use the decay properties in (4. 3) to see that the same

bound holds for the sum, > fr;. That is, we get || fr]loc < 295" which is (4.2) for

~Y

p = co. We now conclude (4.2) using || ||, < [|f]l;/”]l f]|% " for 1 < p < .
Fort € I'N Ej, let

Ry ={z=(21,2') € RY: |oy 4+t —t7] <279, 2| < p2’j+%}.
We will next prove a lower bound for |e*V~2 f;(z)| and = € Ry.
We use polar coordinates in the Fourier variable £ and write { = r70(w) where

w — f(w) is a smooth parametrization of S¢~! near e; with §(0) = e,. Here, the
parameter w lives in a neighborhood of the origin of R?~!. Then

N fi(w) = [o(@FOw) — en) [ 12 inen ) dr doo).
We write (z,0(w)) = 1 + (x,0(w) — e1) and
VA f(x) = 1(x, ) + H(x, t)

where

[(z,t) = /rd_lgp(Q_jr)e"(t_tf”l) dr/v(ZTg(Q(w) —e1))do(w)
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and
M(z,t) = /rdlw(QjT)e”(tt’ﬂl) /um(r, w,z) drdo(w),
with
U (1, w0, ) = 0(27 (B(w) — 61))(e"<z’9(w)_81> — 1).
For the term I(z,t) we set ¢(r) = ¢(r)r?! and note

I(z,t) = 2 ™7 24(20 (t; — t — 21))

1/4

with ¢, ~ 1. Using that (7} , |6(s)|ds)'/4 > 1 we obtain the lower bound

1 o -
@4 ([ e npan) 2 5t pe0-bpmisioh
Rrt

For the term II(z, t) we get a corresponding upper bound, multiplied with an
additional small factor of p. To see this, we expand

1

(4.5) e =D i O(w) — e1))"
n=1

and write

d

(2,0(w) — e1) = 21 (01 (w) — 1) + Y _ wi8;(w).

=2
Fort € I' and © € Ry, we have |z;| < [t — t;] < 2™ 7p and because of
(el,agw MNw=o = 0 we get |z1(01(w) — 1)| < 277p. Furthermore, fori = 2,...,d,

one has |z;0;(w)| < 27™2|z;| < 277p. Thus,
(4.6) (2, 0(w) —e1)] < 277p forz € Ryy, tel

Using the expansion (4.5) we write II = >~ | II,, and note the pointwise bounds
L, (2, 1)) < 26, (20 (tr — ¢ — 1)) / [0(2% (0(w) — en)|l{z, O(w) — e2)]" do(w),

where ¢,(r) = o(r)r¢=1". We have |, (y)| < Cyn®+'(1 + |y|)~¢~! as can be seen
using a (d + 1)-fold integration-by-parts in . Hence

d+1

1L, (2, )] < (Cdp)"nn' 2T YL 4 Wy +t — 1) forx € Ry,

using also (4.6). Taking the L(R;,) norm and summing in n > 1 leads to

EHa-0)
q

1/ L
(4.7) ( / \H(;c,t)|qu) <, p i il g mm
Ry
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Thus, for sufficiently small p > 0 we get from (4.2), (4.4), and (4.7)

: 1/q
(ZteEjﬁI’HeltmfﬂE) d-1 N(Eﬂ]l 92— J)q2]d(1 *)Qfm—(lfl)
q .

> 1Y d+l 1 d—1

12l 25 o m Sy
The right-hand side equals p a N(E N1, 2" 3)42(7” DTG+ D25 G0 Since
N(ENT',277) > pN(ENI,277), the lower bound (4.1) follows. O

5. UPPER BOUNDS IN THEOREM 1.1

Proposition 5.1. Let 2 < p < 7% and s, = (d — 1)(3 — ;). Then for ¢ > 0 and
sufficiently large j > 1,

) 1/p
5.1) (X 12 i) " <o 2marsbom g

rad
tGEj

Once this is proven we can use that py% (psp) = s, for p > p, and obtain (1.5) by

interpolation (restricted to radial functions) of (5.1) with the p = oo version of the
fixed-time estimate (1.1) for functions whose Fourier transform is supported in
the annulus { [¢] ~ 277},

Proof (of Proposition 5.1). For 0 < m < j define

Kjm = sup N(ENI)|I|7P

jr|=2m=

and note that, by definition of 14, we have r;,, < C.2721"5®%) for any ¢ > 0. It
therefore suffices to prove that

. 1/p J
62 (e ER) " < (X ki) Il 2<p< 2
tGEj

It was proven in [ , Proposition 3.2] that for f radial, |x| > 20 and ¢ € [1,2],
the estimate

LP

rad

([ e nsards)™ s i

holds for all 2 < p < oo, with constant independent of . Consequently,

1/p 4
itv/—A —7\1
(e 2B g monon) S N2 S,
teE;
Since N (F,277) < supy-j<r<y N(ENT,277) 1|77 < maxo<m<; Kjm, the inequality
(5.2) will follow from

(53) Z/lw“%mwm<2@mw72w<—-
x|<20

tek; m=0
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Since ¢kl is a radial Fourier multiplier for fixed ¢ € [1,2], and ¢; and f are
radial, we can write the operator ¢*V=2P; as

B P, f(x) /ny\tsf()()
where f(z) = fo(|z|) and

Kj(r, S,t) — Sd/2r—(d—2)/2/ Jd2;2(p7”)<]% (ps)go(z—jp)eitp dp.
0

See, for instance, | , §IV.3]. Here J% denotes the Bessel function of order %.

Using asymptotics of Bessel functions and integration-by-parts, it was shown in
[ , Lemma 2.1] that these kernels satisfy the estimates

|K;(r,s,t)] () Zw]tiris

where w;(u) Sy 27(1 4 27|ul)~™ for all N > 0 and the sum is over all four choices
of the two signs. Changing to polar coordinates and inserting the power weights
into the function and operator, the inequality (5.3) follows from the unweighted
one-dimensional estimates

20
3 / A(d-1)(1-3)
0

teE;

(5.4) <Zf<¢]m/o | fo(s)|P ds
2d

for all possible choices of +, where 2 < p < 5. Forp > 2, we dominate the

left-hand side in (5.4) by Zj ol + anm I1,,, where for m < j

s(d_l)(%_%)wj(t +7r+5s)fo(s)ds " dr

0

0
s(d_l)(%_%)wj (t£r+s)fols) ds‘p dr,

0

2— Jj+m+1 210 ) ) P
I, = Z / (1-3) / sUTVETI G (E £ £ 8) fols) ds‘ dr,
tem; Y27t 0
20 , 210 11 P
I, = Z/ pld=D0=3) / s DGy, it xr£s)fo(s)ds| dr
tek; 1 0

and, with n > 10,

I, Z/ p(d=1)(

tekE;

sDG=)y, i(Exr£s)fo(s)d ‘ dr.

The terms II,, can be treated in a straightforward manner. Note that, for n > 10,
we have by Holder’s inequality
2n+1

Hn 5 Z/ 7g / 2n(d—1)(%—%)27nN2*jN|fo(s)’ ds]pdT
271

tek;
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20 o]
<Y ( / U10-8) gy ) 33y / fols)I? ds

tEEj

SN(B2 2 M2 [ fpds

1
forall1 <p < 2% and N’ > 0, provided N is chosen sufficiently large. Then
(5.5) D L S 277 follp

n>10

fora111<p< andanyN>0
We now turn to the terms I,,,. The term I, is also trivial, since for p > 2

66 LsY / / oyl 7 £ 5) fo(s) s dr < N2 29| ol

by Young'’s convolution inequality, noting that ||w;||; < 1. For the term I, we
define for each ¢ € [1,2] the interval J; ; = [t — 27773, ¢ + 27773]. We note that for
tell,2land 0 <r <277

J

forany N > 0, and

210 210

wit £7 £ 5)[fo(s)[Lye (s)ds S 2‘”/ [fo(s)lds < 2777 foll,

0

210

/ wi(t 7 £ 5)|fo(s)|Ls,,(s)ds S llwsllyll fols, o < 277 foll g, llp,
0

where both inequalities follow from the bound w;(u) Sy 27(1 + 27|ul)~" for any
N > 0 and Holder’s inequality. Using these,

2—J
s ( / PO dr) (27N (B 27 folly + 27 Y 1ol )
0

tGEj

(57) S PUNED| ffjp < 2 EEw)| fop

for2 <p< 2% 4, using that (d — 1)(2 — 1) = ps, < y%(psp).

We now address the main terms with 0 < m < j. We decompose [1, 2] into
disjoint intervals {/,} of length |I,| = 277", and denote by I the concentric
interval with 5 times the length. Then

9—j+m+1
I, < 20m=d=1) Z Z / / j(tjzris)|f0(s)|ds]pdr
B teE;NI, tm
< sup [I|TUVGEVY(E NT) Z/ / w;(r' = 8)| fo(s )|ds}pdr'
=2

210 210

s £ ) o) 5] A S i [ 1ol s

0

2
nn 1]
1 0
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by the change of variables r’ = ¢ + r and noting that ||w,||; < 1. Combining this
estimate with (5.6) and (5.7) we get

J J
(5.8) D Ia S mialflL.
m=0 m=0
By (5.8) and (5.5) we obtain (5.4) forall 2 < p < d2le’ which concludes the proof.[]

6. UPPER BOUNDS IN THEOREM 1.6

For the upper bounds in Theorem 1.6 it suffices to settle the case r = 2. Setting
T/ = V=2 P; we get from Young's inequality and Plancherel’s theorem

(6.1) |77 |2y e < 2H027HD 2 < g < 0.

Moreover, by the usual T7* argument [ ], the asserted L? — Lq(f%j) bound
for {T/}icp, is equivalent with the inequality

(6.2) \|Sj9HLq(z%Ej) S 22j5\|9”m’(z%j)
where

Sgly,t) =Y THTH gl t))(y)
t'el;
and s > sg(q). The Schwartz kernel of T} (T3)* is given by 279/, (y, t, 1/, t') where

1 ;27 / /
Kjly. t.y/,t') = e )d/ lp(|€]) 2 [E=tIEl+ =€) g¢
T Rd

Let i) € C>°(R?) with 7j(w) = 1 for |w| < 1/2 and 7 compactly supported in {|w| <
1}. Let n(w) = f(w) — 7(2w). Now we set 7_;(w) = 7(2/w) and ni.(w) = n(2 " w),
sothatl=17_;+ > - 1m; for every j. We decompose

(6.3) =S+ S+ R,
m>0 m>0
with
Sgly.t) =2y / Ki(y.t. v t)i-(y —y)a(y', ') dy’
t/GEj R4
and, form > 1
Shgly.t) =2 > / Ky, t, ' t)nm—j(y =y, t') dy',
Rd

t/GEj
|t_t/|§2m7j+10
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Rugl) =2 3 [ Kt Vsl =)ol 1)y
t'€E;
[t— t’|>2m J+10

The term 57 is trivial, and the terms R/, and S/, with m > j + 10 can be seen as
error terms.

Lemma 6.1. Let 2 < g < oo. Forall j > 0, N > 0, we have the following bounds.
(i) |57 HLq (@)1, )< 9jd(1-2/q)
(ii)) Form >] + 10, HS | o ()18, JSv 2o (+m)N

(iii) Form >0, || R || .o (CRRy )< 9—(j+m)N_

Part (i) follows from (6.1) and the Cauchy-Schwarz inequality. The proof of (ii)
and (iii) is straightforward, and based on

L+ 20t —=¢)"™ if[t—t'] =2y — |

|K‘(y7tay/at/>| SM ; _ .
! (L+2y -y D™ ifly—y'| > 2]t -t

for any M > 0, which is obtained using integration-by-parts. We omit the details.
The main contribution comes from the terms S7, with m < j + 10.

Lemma 6.2. Let 2 < ¢ < oo and

)\jvm:2jd(17§)2 md=1)(z-7) sup N(ENI,2” )%
j1j=2m-5

Form < 5+ 10,
(64) |29l oe, ) S Nianllgll o e

Proof. By interpolation, it suffices to show (6.4) for ¢ =2 and ¢ =
Case 1: ¢ = oo. After changing to polar coordinates, write (27)?2~ ]dSJ 7 g(y,t) as
(6.5)

Z/ / / (r) 2t e ==y Ol g (o) Yy (y — o) do(0) dr dy
Rd Sd 1

t'ekl;

with do denoting the normalized surface measure on S¢!. It is well-known [ ]
that

/ et v:0) do(0) = Z eii‘wbi(y)
gd—1 T

for smooth symbols b, satisfying 004 (w) S, lw|=“2 1l for |w| > 1 and o € N4
Then (6.5) becomes

ZZ/ / b ( 2j r(y—y)le(r )|2 d=1 i r((t=t) 2yl 9 )N iy — y')drdy'.

+ t'eE;
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Integrating by parts in r, we estimate
277980 g(y,t |<2m22/ L+2)t =t £y —y'l)) "ol ¢ dy
+ {CE,
for any N > 0. For fixed y, the ¢*(E;) norm in ¢ of this expression is bounded by

2mz/ Z ST+t Ey-yl) " ) dy/

tekE; tVeE;

2’"2/ > gy 1) >/2dy’

ek

where we applied Schur’s test on the 1-separated set {2/t : ¢ € E;}. Combining
the above we get

. ide—md=L
’ang(ya')hgj <2927 HQHLI([;;J_)
which yields (6.4) with ¢ = co

Case 2: ¢ = 2. Using the Fourier inversion theorem for 7,,_;(y — y') we write

1 —~ i29=m(y W / —i27 (Y W
Shal.0) = g [ A0S T [ala)e )]

t'€E;
‘t_t/‘SQm—j+10

In view of the rapid decay of 7j(w), the inequality (6.4) for ¢ = 2 follows via
Minkowski’s inequality from
2) 1/2

(6.6)
For u € Zwelet I, = [u2™ 7, (u + 1)2™~7]. The left-hand side above is equal to

(> > R
(=X ] ¥ wayueow

t'eE;
It t’|§2m Jj+10
w teE;NI, t'eE;
|t_t/|<27n7j+10

S s N(ENL27)glee, )

dy) :

1

= > NEn) 3 Y [ 1@y ot 0w )’

, tEE;NI, t'€B;N
lp—p/[<2M

1/2
S s NENL2AH(Y Y e ))

[I|=2m= VEE;  tek,
jt—t/|52m

Susup N(ENI,2" )||9||L2e2)
I|=2m—J

where we have used Cauchy-Schwarz in the first inequality and || 7/||2 2 = 1 in
the second inequality. Thus (6.6) follows. This finishes the proof of Lemma 6.2.[]
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Proof (of Theorem 1.6, upper bounds). As discussed at the beginning of this sec-
tion, the inequality (1.12) follows from (6.2). To prove the latter, we use the
decomposition (6.3) and the triangle inequality. By Lemma 6.1

. d(1-2
1989 lzae )+ D IShgllza ) + D IRhgllae, ) S 2 Muw

m2>j+10 m>0

2
27,48 q

Since 4(a) > a, we have 274073 < 2/@HDG=9G V(5" (3-1) — 92s5() and thus
the above bound is admissible towards proving (6.2).
We next turn to the terms S/, with m < j 4 10. By the definitions of ), ,,, v}
and sg(q) we get for e > 0
)\j,m S 2j(d+1)(%—%) [ sup ’]|f(d71)(%71)N<E N I, 27j)] %
|1]=2m=

<_ DG (T (E-1)+e) < 9j2snla)te)

Thus, by Lemma 6.2 we obtain for s > sg(q)

> 11559l e ) e (1 + )2 EED g e ) S 29l e,
m<j+10 i i
which concludes the proof of (6.2). O

The above argument can also recover a sharper L? — L? result for the square-
function associated with a set of given Assouad dimension that was previously
proved independently by Wheeler [ ], and by the first, second and fourth
author (unpublished). Recall that dimy £ is the infimum over all exponents a
such that N(E N 1,0) < C,(]]/6)* holds for all § € (0, 1) and all intervals / with
<1< L.

Proposition 6.3. Let 2 <r < ¢ < 00,7, = dimy E and g, = —Z(dijl_ﬁz%)~

(i) For q > q.,

) 1/r 11
[(Z e =) 7 221l

tEEj

(i) Suppose supys< i< (1) N(E N 1,8) < co. Then

ity = AT 11
H(Z e t\ﬁAPjﬂ ) HMM < o7d(3=55)
tGEj 1

fll2-

Proof. It suffices to show the r = 2 case.
. 270
For part (i) we have ), ,, <. 9741~ D)9~ m(d=D(5-1)=5+9) and thus

i 2y 1_1 2’Yo
©.7) |879llzaqey ) Se 24072 EDEmIT gl g

Observe that (d — 1)( — 1) — 2= > 0 for ¢ > g, hence we may sum inm < j + 10
in this range and get part (i) by the usual 77" argument used above.
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For part (ii), we use the stronger assumption N(E N 1,d) < (6/]1])7 to get
(6.7) with € = 0. Then Bourgain’s interpolation trick [ ; ] yields

| 3 st

m<j+10

< 2jd(1*q%)

~

qu,oo(g%j) |g||ng,1(g%j)-

Now part (ii) follows again by a 77" argument, using duality for vector-valued
Lorentz spaces. O
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