A Multifractal Decomposition for Self-similar
Measures with Exact Overlaps

ALEX RUTAR

ABSTRACT. We study self-similar measures in R satisfying the weak
separation condition along with weak technical assumptions which are sat-
isfied in all known examples. For such a measure i, we show that there is
a finite set of concave functions {7,...,7,} such that the L9-spectrum of
p is given by min{r,...,7,} and the multifractal spectrum of p is given
by max{r{,..., 7}, where 7 denotes the concave conjugate of 7;. In par-
ticular, the measure p satisfies the multifractal formalism if and only if its
multifractal spectrum is a concave function. This implies that p satisfies the
multifractal formalism at values corresponding to points of differentiability
of the Li-spectrum. We also verify existence of the limit for the L?-spectra of
such measures for every ¢ € R. As a direct application, we obtain many new
results and simple proofs of well-known results in the multifractal analysis of
self-similar measures satisfying the weak separation condition.
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1. INTRODUCTION

Given a finite Borel measure 1, a standard way to quantify the density of 1 at a
given point z in its support is through the local dimension, which is the quantity

log u(B(z,r
dimyee(p, z) = lim —gu( ( ))
r—0 log r

when the limit exists. A natural question to ask is the following: what is the
structure of the set of points which have a prescribed local dimension a? In many
interesting cases, these level sets of local dimensions are uncountable and dense
in supp p, but have pu-measure zero for most values of a. We will focus on the
Hausdorff dimensions of these level sets of local dimensions, which we denote by

fula) = dimpy{x € supp p : dimyjee (i, ) = a}.

The function f, is commonly known as the (fine Hausdorff) multifractal spectrum of
L
Related to the multifractal spectrum is the L%-spectrum of the measure p, which
is given by
1 ; B 2 1
7,(¢) = lim inf ogsup 2 iU B(zi, 1))
r—0 log r

where the supremum is taken over all disjoint families of balls { B(z;,r)}; with
x; € suppp. A standard application of Holder’s inequality shows that 7, is a
concave function of g. The L-spectrum is related to the multifractal spectrum
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through a heuristic relationship known as the multifractal formalism. It states that if
the measure p is “sufficiently nice”, then the multifractal spectrum is the concave
function given by

fula) = 7;(a) = inf{aq — 7.(q) : ¢ € R}.

One can think of the L9-spectrum as a sort of box-counting dimension, whereas
the multifractal spectrum is a generalization of the Hausdorff dimension. Of
course, the multifractal formalism does not hold in general: for example, in the
presence of non-conformality, it can happen that dimy K < dimp K [ 1,
in which case the multifractal formalism certainly fails. However, even when a
measure is “locally nice”, the multifractal formalism can fail: if ; and p, are prob-
ability measures with disjoint supports each satisfying the multifractal formalism
and v = ({1 + p2)/2, then

7.(q) = min{Tm (9), Tha (Q>}
fola) = max{f,, (a), fu,(a)}.

In particular, v satisfies the multifractal formalism if and only if 7,,, (¢) < 7,,(q) or
Ty, (q) < 74, (g). Our main result states, for a certain class of conformal measures,
that this phenomenon is the only way in which the multifractal formalism can fail.

More precisely, we will focus on the multifractal analysis of self-similar mea-
sures in R, which are defined as follows. Given a finite set of maps (.5;);cz where
each S, : R — Ris given by S;(z) = r;x + d; where 0 < |r;| < 1 and probabilities
(pi)iez with p; > 0 and ) p; = 1, the self-similar measure p is uniquely defined by

M:Zpi'sz‘,u

1€T

(1.1)

where S, is the pushforward of y by ;.

Self-similar measures are relatively regular by nature of their construction
(indeed, they have equal box and Hausdorff dimensions [ 1), so one might be
more optimistic for nice multifractal properties. For example, self-similar measures
are exact-dimensional [ ], which means that there is precisely one value «
for which the level set {x € supp p : dimjo.(p, ) = o} has full p-measure. If there
is an open set U satisfying | J,.; 5;(U) C U where the union is disjoint, we say

that p satisfies the open set condition [ ]. For such measures, the L¢-spectrum

is the unique smooth function satisfying 3, _, pfr; ™

formalism holds [ ; I
However, for self-similar measures with overlaps, the multifractal formalism
can fail. One of the earliest known examples of this fact is due to Hu and Lau
[ ], where they show that the three-fold convolution of the Cantor measure
has an isolated point in its set of local dimensions, and therefore fails the multifrac-
tal formalism. This measure, and generalizations, have been studied in [ ;
; ; ] among other papers. Another class of well-studied mea-
sures are the Bernoulli convolutions, which is the law of the random variable
Yoe g tA" for A € (0,1) where the 4+ and — signs are chosen with equal proba-
bilities. In this case, for any parameter A € (1/¢, 1) where ¢ is the Golden mean,

= 1, and the multifractal
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the set of local dimensions has an isolated point [ , Proposition 2.2], and ¢
is maximal with this property. Testud [ ] constructed self-similar measures
associated with digit-like sets for which the multifractal spectrum is non-concave
and the maximum of two non-trivial concave functions. Thus behaviour similar
to (1.1) can occur for self-similar measures with overlaps.

On the other hand, for Bernoulli convolutions with contraction ratio the re-
ciprocal of a simple Pisot number (the unique positive root of a polynomial
b — k=1 —... —x —1 for some k > 2), the multifractal formalism is known to hold
[ ]. Itis also shown in [ ] that any self-similar measure associated with
the IFS { Az, Aoz + A1 (1 — X2), Agz + (1 — Ag) } for Ay, Ap > 0and Ay +2X — A A < 1
satisfies the multifractal formalism. The L?-spectra of self-similar measures also
have a certain amount of regularity: the limit defining 7,,(¢) is known to exist for
any ¢ > 0 [ I

We see that, even for self-similar measures, a wide variety of behaviour is
possible. Determining precisely when the multifractal formalism is satisfied, and
more generally understanding properties of the Li-spectrum and multifractal
spectrum when it is not, is a very challenging question and little is known.

In this paper, we develop a general theory in an attempt to remedy this. We will
show for an important class of self-similar measures that the varied multifractal
behaviour observed above follows from a decomposition similar in form to (1.1).
More precisely, we show that the L?-spectrum of 1 is given by the minimum of a
finite set of concave functions, and the multifractal spectrum of 1 is given by the
maximum of their concave conjugates. These concave functions can be loosely
interpreted as the Li-spectra of a decomposition of i as a sum of subadditive
set functions, each satisfying a multifractal formalism. By standard arguments
involving concave functions, this shows that the multifractal formalism holds for
p in the following generic sense: y satisfies the multifractal formalism if and only
if f, is a concave function. This is in stark contrast to measures associated with
iterated function systems of non-conformal maps as discussed above.

1.1. The weak separation condition and finite type conditions. Many of the
examples mentioned in the preceding section satisfy various closely-related finite
type conditions [ ; ; ; ]. Heuristically, these finite type
conditions require that there are only “finitely many overlaps” These separation
conditions are all special cases of the weak separation condition of Lau and Ngai
[ ], which states that there is a uniform bound on the number of simultaneous
“distinct overlaps” (see (3.9) for a precise statement). Note that the weak separation
condition is strictly weaker than the open set condition. When the invariant
set supp 1 is a closed interval, the generalized finite type condition coincides
with the weak separation condition [ ; ]. It is an open question to
determine, outside certain degenerate situations, if these two separation conditions
are equivalent in general.

The multifractal analysis of such measures have been extensively studied
since. Such measures have enough structure to allow strong results, yet the
class contains many interesting examples and exceptional behaviour. The most
significant general result to date, due to Feng and Lau [ ], states that for self-
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similar measures satisfying the weak separation condition in R?, the multifractal
formalism holds for any ¢ > 0, and for ¢ < 0 there is an open set U, on which . is
sufficiently regular so that the L?- and multifractal spectra restricted to U, satisfy
the multifractal formalism. However, the relatively open set Uy N K is almost
always a proper subset of K, so this result only gives a (somewhat coarse) lower
bound for f,. The case for ¢ < 0 is more challenging to establish in general: indeed,
we already saw for such self-similar measures that the multifractal formalism need
not hold.

For measures satisfying the weak separation condition in IR, the author recently
established general conditions based on connectivity properties of an associated
graph for which the regularity on the set U can be extended to the entire set &

[ ]. This can be applied to verify the multifractal formalism for all ¢ € R for
certain examples such as those discussed in [ , Proposition 4.3] or [ ,
Example 8.5].

Our work here extends these results under a slightly more specialized hypoth-
esis (detailed in Definition 3.14). We will discuss our technical conditions and
results in detail in the following section. We are not aware of any IFS satisfying
the weak separation condition for which the technical conditions do not hold.

1.2. Main results and outline of the paper.

1.2.1. Symbolic encoding and the transition graph. In §3, we define a generalized
version of the constructions in [ ; ; ] which provides a more
cohesive perspective on the “net interval” constructions defined therein and sim-
plifies the study of certain examples. The construction is based on the idea of an
iteration rule ® (see Definition 3.3), which describes how to define inductively a
nested hierarchy of partitions {P, },2, in a way which depends only on the local
geometry of K (see Proposition 3.5). The end result is to construct a rooted directed
graph G, which we call the transition graph. The edges of the graph G are equipped
with matrices 7'(e), such that norms of products of matrices corresponding to finite
paths beginning at the root vertex encode the measure 1 on a rich family of subsets
(this result is given in Proposition 3.12). When the transition graph ¢ is finite, we
say that the IFS satisfies the finite neighbour condition with respect to ®, or the $-FNC
for short (see Definition 3.14). For the remainder of this paper, we will assume
that this condition is satisfied.

We denote by Q2 the set of infinite paths in G originating at the root vertex,
which is equipped with an “almost injective” Lipschitz projection 7 : Q2* — K.
The set 2 can be thought of as “symbolic” analogue of K, where the weights IV (e)
encode the metric structure of K and the matrices 7'(¢) encode the self-similar
measure /. Generally speaking, we will establish results in the space 2°°, and then
transfer the results to the self-similar measure ;. using separation conditions.

The graph G need not be strongly connected. We call the non-trivial connected
components of G loop classes, which we define fully in §4.1. Since the tail of any
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FIGURE 1. A “generic” transition graph

infinite path is an infinite path in a loop class, we obtain a decomposition
m
o= Joz
i=1

for appropriate sets (27, where the union is disjoint. This decomposition of G will
correspond directly (outside certain degenerate situations) with the decomposition
given in Theorem B. A figure depicting a (hypothetical) transition graph can
be found in Figure 1 and one can observe that there are 4 non-trivial strongly
connected components £, fori =1,...,4.

1.2.2. Loop classes and the upper bounds. There can be components £; where the
corresponding sets 7(€2;,) € K have measure 0 (in Figure 1, this is £, £,, and
L3). However, even though the measure i cannot be restricted to 7({),) in a
sensible way, the corresponding symbolic measure (which we denote by p) does
restrict properly. In §5.1, we define symbolic analogues 7., of the L9-spectrum and
fr, of the multifractal spectrum for the loop classes £;. These functions can be
interpreted as L9-spectra and multifractal spectra of some appropriate subadditive
set functions defined on 7 ({2, ).

In Lemma 6.14 and Theorem 6.6, we establish the following general upper
bounds.

Theorem A. Suppose 1 is a self-similar measure satisfying the ®-FNC with loop classes
Ly,...,L,, and corresponding symbolic LI-spectra 7., ..., T¢, . Then

fule) <max{r{(a),..., 7, ()} 7u(q) < min{71(q), ..., Tm(q)}-

Unlike the general upper bound f, < 7 [ , Theorem 4.1], this upper bound
for f, follows by an argument which depends sensitively on the existence of
the local dimension in the definition of f,(«). The precise ideas here can be
found in Lemma 6.4 and the surrounding discussion. Note that upper bound
given in Theorem A is a non-trivial improvement on the general bound 7;; when
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max{7},..., 7} is not a concave function. Indeed, since 7,(q) < 7;(¢), we have
7i(a) > 7/(a) so that

T, > max{7y,..., T}

but 7 is necessarily concave.

1.2.3. Irreducibility, decomposability, and the lower bounds. In order to establish
the lower bounds, we require two main assumptions. The first, which we call
irreducibility, can be interpreted as an internal connectivity property for the loop
classes, and depends only on properties of the paths and transition matrices
internal to some loop class £; (see §4.2). This property was introduced and
studied in [ ]; as with that paper, this result is essential for establishing the
symbolic multifractal formalism in Theorem 5.8. The irreducibility assumption
is also important to resolve the fact that the projection 7 is not, in general, bi-
Lipschitz. This technical result is given in Theorem 5.12. While irreducibility
formally depends on the choice of probabilities, in practice, every example of
which the author is aware can be verified by the slightly stronger hypothesis of
Lemma 4.5, which does not depend on the choice of probabilities.

The second main assumption, which we call decomposability, is a statement
about the finite paths which do not have any edges in loop classes (see §4.3).
This property is closely related to the positive transition matrix assumption in
[ ], and our proof of Theorem 6.15 largely follows the ideas in that docu-
ment. This assumption allows a product-like decomposition of 2> as Q7 x --- x
Q% in a way which preserves the norms of matrices. See (6.3) for the precise
statement and application of this idea.

We will also assume a simple non-degeneracy property (given in Defini-
tion 6.12). Similar statements can be made assuming some loop classes are degen-
erate, but we omit this discussion for simplicity. We then have the following result,
proven in Corollary 6.13 and Theorem 6.15.

Theorem B. Suppose 1 is a self-similar measure satisfying the -FNC with loop classes
Ly, ..., L, and corresponding symbolic L-spectra 7., ..., T¢,,. Suppose each loop class
is non-degenerate. Then:

(i) If the irreducibility assumption is satisfied,

fula) = max{r; (a),..., 77 (a)}.

(i) If the decomposability assumption is satisfied,

TN(Q) = mln{Tﬁl (Q)7 e ’T»c'm(Q)}'
Moreover, the limit defining 7,,(q) exists for every ¢ € R.

Outside the open set condition [ ] and the case ¢ > 0 [ ], there does not
appear to be any general existence results for the limit 7,(¢) when p is a self-similar
measure. Moreover, the author is not aware of any self-similar measure satisfying
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the weak separation condition which does not satisty all the hypotheses in The-
orem B. To provide evidence for this claim, we observe that the hypotheses are
satisfied for a number of examples (see §7). However, verifying these conditions
in general seems to be challenging.

We can now use Theorem B to describe precisely when the multifractal formal-
ism holds. We say that y satisfies the multifractal formalism at « if f,(a) = 7i(«).
Recall that the subdifferential 07, (¢) is the interval from the right derivative to

the left derivative of 7, at ¢g. The following result is proven in Corollary 7.1.

Corollary C. Let y satisfy the same hypotheses as Theorem B, along with the irreducibility
and decomposability assumptions. Then (i satisfies the multifractal formalism at o if and
only if « € 07z,(q) for some 1 < i < mand q € R with min{7z,(q),...,72,(q)} =
7z,(q). In particular, if the derivative o = 7,(q) exists, then p satisfies the multifractal
formalism at «.

In other words, the multifractal formalism fails precisely on phase transitions
(values of a corresponding to points of non-differentiability of the L9-spectrum)
caused by transitions in min{7z,(q),..., 7, (¢)} from some 7.,(q) to 7.,(q) for
i # j. This corollary is highlighted in Figure 2 with two loop class £, and £, such
that 7., and 7., intersect. For values of a corresponding to the phase transition
of 7, = min{r.,,7.,} at their intersection point ¢y, we see that (M differs from
fu = max{7; , 77 }. Here, the multifractal formalism is satisfied at « if and only
if a ¢ (az,a1). In fact, 7 is the infimal concave function bounded below by
fu- Thus the phase transitions which cause the multifractal formalism to fail are
fundamentally linked to the connectivity properties of the transition graph. For
example, this provides a general explanation for the phenomenon observed by
Testud [ ] for self-similar measures associated with digit-like sets (see §7.2).

There can be phase transitions not of this form: for example, for the Bernoulli
convolution associated with the Golden mean, 7, = 7, for a loop class £ but
7,(¢) is not differentiable [ ]. Our results provide some explanation for the
phenomenon of self-similar measures with non-differentiable L%-spectra which
still satisfy the multifractal formalism.

A simple loop class is a loop class where the edges can be ordered to form a
cycle which does not repeat vertices. In Figure 1, the simple loop classes are given
by £, and £,. As a straightforward application of Theorem B along with basic
properties of concave functions, we obtain the following result. The proof of this
result can be found in §7.1.

Corollary D. Let . satisfy the same hypotheses as Theorem B, along with the irreducibil-
ity and decomposability assumptions. Then y satisfies the multifractal formalism if and
only if the multifractal spectrum is a concave function. In particular, if every non-essential
loop class is simple, this happens if and only if the set of local dimensions is a closed
interval.

1.2.4. Applications and analysis of examples. The hypotheses in Corollary D are
satisfied in many well-known examples. Here, we list some IFSs for which Corol-
lary D applies and every non-essential loop class is simple, so that any associated
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. slope = aq
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(B) Concave conjugates and multifractal spectra

FIGURE 2. An example illustrating a non-trivial phase transition

self-similar measure satisfies the multifractal formalism if and only if the set of
local dimensions is a closed interval:

o the family {£ + L(d—1) : j = 0,1,...,m} withm > d — 1 > 1 integers,
which includes the 3-fold convolution of the Cantor measure | ], and is
discussed in detail in [ , Section 5].

¢ Bernoulli convolutions with parameters that are reciprocals of simple Pisot
numbers [ ], or reciprocals of the Pisot roots of the polynomials z* —
202 4+ 2 — 1, 2% — 2% — 222 + 1, and 2* — 22° + x — 1 (see §7.3).

e thelFS {pzx, p*x+p—p?, p*xr+1—p*} where 1/p is the Golden mean, considered
in [ , Section 5.3.3].

By combining our results with the detailed study of sets of local dimensions
contained in the references cited above, we obtain a number of new examples of
measures satisfying the multifractal formalism which were not previously known
in the literature. Such results about the validity of the multifractal formalism
were previously only known for Bernoulli convolutions associated with simple
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Pisot numbers [ ]. We refer the reader to [ ] for details related to the
computation of sets of local dimensions under similar assumptions to this paper.

To conclude this paper, we will provide a detailed study of some examples
in §7 to illustrate more concretely how our results may be applied in specific
situations. Our selection of examples does not attempt to be exhaustive, and the
examples are primarily chosen to illustrate how our results explain the different
multifractal phenomena exhibited by self-similar measures satisfying the weak
separation condition.

In §7.2, we study a family of self-similar measures associated with an IFS with
maps of the form = — =/ + i/l or x — —x/{ + (i + 1)/¢ where ¢ > 2 is an integer
andi € {0,1,...,¢—1}. Such measures were first studied by Testud [ ], where
he provided some of the first known examples of self-similar measures which
exhibit non-trivial non-concave spectra. Our results extend and contextualize
his results, since we do not require any assumptions on the digit sets. This also
extends results obtained by Olsen & Snigireva [ ] for such measures.

In §7.3, we provide a simple (given our general results) verification of the
multifractal formalism for Bernoulli convolutions with parameters that are recip-
rocals of simple Pisot numbers. This fact was first observed by Feng [ ]. Our
technique is more general and depends only on establishing certain structural
properties of the transition graph. Our results also apply, for example, to the
polynomials 2% — 222 + x — 1, 2" — 23 — 222 + 1, and 2* — 223 + 2 — 1.

Finally, in §7.4, we verify the multifractal formalism for any self-similar mea-
sure associated with a class of IFS generalizing an example of Lau & Wang [ I
which is the IFS { A1z, Aoz + A1 (1 — X2), Aaz + (1 — A2)}. The multifractal formal-
ism for the self-similar measure studied by Lau & Wang was first verified by the

author in a recent paper [ ]. We provide a simplified proof of this fact, which
generalizes naturally to a family of related examples (which also includes [ ,
Example 8.5]).

1.2.5. Questions. We conclude this section with three natural questions.

1. Are the hypotheses in Theorem B satisfied for every measure 1 satisfying
the weak separation condition? Both a counterexample or a proof of non-
existence here would be very interesting.

2. In what generality does a version of Theorem B hold? Is the multifractal
spectrum of any self-similar measure always the maximum of a finite set of
concave functions?

3. If pis a self-similar (or self-conformal) measure and f), is a concave function,
is it necessarily true that ;. satisfies the multifractal formalism?

1.3. Notation. Given a general set X, we denote by #.X the cardinality of the set
X.

We work in R with the standard Euclidean metric. All sets and functions in
this document are Borel unless otherwise noted. If y is a Borel measure and f a
measurable function, we denote by f: the push-forward of i by f, which is given
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by the rule
fulB) = p(f(E)).

Given a Borel set E, we write £° to denote the topological interior and diam(E)
the diameter of F.

Given families (a;);c;r and (b;);c; of non-negative real numbers, we write a; < b;
if there exists some constant C' > 0 such that a; < Cb; for each ¢ € I. We say
a; = b; if a; < b; and b; S a;. We will always allow such relationships to depend
implicitly on the governing weighted iterated function system and the transition
rule ®. Any other dependence, unless otherwise stated, will be indicated explicitly
with a subscript.

2. SOME BRIEF PRELIMINARIES

2.1. Weighted iterated function systems. In our setting, a weighted iterated func-
tion system (WIFS) is a tuple (S;, p;)icz Where

(2.1) Si(x) =rix+d;:R— Rforeachi € Z

with 0 < |r;| < 1, so that each 5; is a contracting similarity in R, and the p; satisfy
p; > 0and ) p, = 1. We refer to the tuple (S;);cz simply as an iterated function
system (IFS).

There are two important invariant objects associated with a WIFS, both of
which can be realized as the unique fixed point of a contraction mapping on an
appropriate metric space. The first is a non-empty, compact set K satisfying

K = JsSi(x),
ieT
known as the self-similar set associated with the WIFS. The second is a Borel
probability measure ;. satisfying

(2.2) n(E) = Zpi - Sip(E)

for any Borel set E C K, where S;u(E) = u(S; ' (E)) is the pushforward of p by
S;. We say that . is the self-similar measure associated with the WIFS. We refer the
reader to the book of Falconer [ ] for details concerning the existence and
uniqueness of these objects.

Note that supp ¢ = K. Throughout this document, we will assume that K is
not a singleton, so that . is a non-atomic measure. By conjugating the maps as
necessary (which amounts to an appropriate translation of the d;), we may assume
that the convex hull of K is [0, 1].

Let Z* = (J,—, Z" denote the set of finite tuples on Z. Given ¢ = (01, ...,0,) €
1", write

SJ:SznO"'OSJna To =Toy " Top,
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and

Po = Poy " " Poy -

Abusing notation slightly, we denote the empty word (the unique word of length
zero) by () and write Sy = id, pyp = 1, and ryp = 1. Given another word 7 =
(T1,...,Tm), the concatenation ot is the word (o4, ...,0,,71,...,Ty). We say that a
word o is a prefix of 7 if there exists some w such that 7 = ow.

2.2. Concave functions. Let f: R — RU{—o0} be a concave function. The
subdifferential of f at x is given by

Of(x) ={a:aly —x) + f(x) > f(y) forany y € R}.

Of course, if f is differentiable at z, then 0f(x) = {f'(x)}. The concave conjugate of
f is the function

f*(a) = inf{az — f(z) : z € R}.

Naturally, the infimum may be attained at —oc. Note that f* is always concave,
and concave convolution is involutive (i.e. f** = f when f is a concave function).
We will use the fact that f*(a) + f(z) = ax whenever a € 0f(z).

We refer the reader to [ ] for more detail and proofs of these facts.

2.3. Local dimensions and multifractal analysis. Let y be a finite Borel measure
in R with compact support.

Definition 2.1. Let x € supp p be arbitrary. Then the lower local dimension of p at x
is given by

1 B(xz,t
dim, (11, 7) = lim inf 2828 1)
t—0 logt

and the upper local dimension ﬁloc( p, x) is given similarly with the limit inferior
replaced by the limit superior. When the values of the upper and lower local
dimension agree, we call the shared value the local dimension of y at x, denoted
dimyee (1, ).

We are primarily interested in understanding geometric properties of the level sets
of local dimensions. Define

Eu(a) = {z € supp p : dimyo.(p, ¥) = dimiee(p, ) = a}.

We will focus on the (fine Hausdorff) multifractal spectrum of 11, which is the function
fu: R — RU{—o0} given by

fula) = dimy E, (o)

where, by convention, we write dimy ) = —oo0.
A different (but related) way to quantify the density of y is through the L4-
spectrum of the measure.
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Definition 2.2. The L9-spectrum of p is given by

1 (B2, 1))
0 = it B0 B )
— Og

where the supremum is over families of disjoint balls {B(x;,t)}, centred at
x; € K.

Standard arguments show that the function 7, is an increasing concave function of
q. Set

. Tu\4q . Tu\4q
Gmin(10) = Jim u; ) (1) = lim ué )

When . is a self-similar measure, it is known that «,,;, and ay,., are finite real
numbers (see, for example, | , Corollary 3.2]).

The multifractal formalism is a heuristic relationship introduced in [ |
which relates the L?-spectrum and the multifractal spectrum of 1 under certain
conditions.

Definition 2.3. Given a € R, we say that the measure y satisfies the multifractal
formalism at « if

where 7 is the concave conjugate of 7,,. We say that y satistfies the (complete)
multifractal formalism if 1 satisfies the multifractal formalism at every a € R.

In particular, f,(«) is a concave function which takes finite values precisely on the
interval [amin (1), Qmax (14)]-

It always holds that f,(a) < 7 () (see, for example, [ , Theorem 4.1]) and
if £,(a) is non-empty, then auin < @ < upax [ , Corollary 3.2]. However, as
discussed in the introduction, the set of & where E, (a) # () need not be a closed
interval and, even if it is, the multifractal formalism need not hold [ 1.

3. A GENERALIZED TRANSITION GRAPH CONSTRUCTION

Self-similar measures have a natural encoding as a projection of self-similar mea-
sures in sequence space. Let Z>° denote the set of all infinite sequences on the alpha-
bet Z equipped with the natural product metric. Given a sequence (i,,)7°, € Z*,
define the projection 7y: 7> — K by the rule

o((in)ey) = lim S;, 0---0.5; (0).

n—oo

When the compact sets S;(K) are disjoint for distinct ¢ € Z, the map 7 is bi-
Lipschitz. In this case, the value of the measure 1 has a simple formula for a rich
family of subsets of K, namely

(31) M(Sn O---0 SZn(K)) = Diy *  Diy,-
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However, when the measure 1 has overlaps, such a simple formula no longer holds
since the projection 7 fails (in some situations quite badly) to be bi-Lipschitz.

A technique to overcome this limitation was first introduced by Feng [ ]
and extended in [ ; ]. In the subsequent sections, we will introduce a
convenient framework which generalizes the prior net interval constructions; this
will allow the simplification of analysis of examples in §7. As this construction
underlies all the results in this paper, we informally summarize the main ideas
here.

Recall that the convex hull of K is [0, 1]. In §3.1, we inductively construct a
nested sequence of partitions of K with mesh size tending to 0, which we will
denote by (P,);°,. Here, a partition P, is a finite collection of closed intervals
{A1,..., A} where AS N A% = () fori # j, AN K # 0, and K C I, A;. We set
Po = {0, 1]}. We will associate to each A € P, a neighbour set V(A) (an ordered
tuple of similarity maps from R to R) such that each similarity map is a normalized
version of some word S, with S,(K) N A°. In the sense of Lemma 3.4, we also
require that V(A) does not contain repetitions and satisfies a sort of maximality.
For a given A € P,, we want that the children {A’ : A’ € P41, A’ C A} depend
uniquely on V(A), as made precise in Proposition 3.5. The (basic) iteration rule
given in Definition 3.1 and Definition 3.3 underpins this inductive construction
(we think of the domain of an iteration rule as the set of all possible neighbour sets
of net intervals), and the technical hypotheses ensure that the various properties
listed above are satisfied. Now, in §3.2, we construct a directed transition graph
G with root vertex v,,; such that the finite paths in G of length n are in bijection
with the partitions P, (see Lemma 3.9). We associate to the edges in G transition
matrices such that the ;i-measure of a net interval is the norm of the corresponding
products of matrices (see Proposition 3.12).

Our main assumption from this point on will be that the graph G is finite; more
details on this assumption are given in §3.4. While G is not, in general, strongly
connected, we can enumerate the non-trivial maximal strongly connected compo-
nents as {L4, ..., L,,} (we refer to these as loop classes, as defined in Definition 4.1).
Denote the set of infinite paths in G beginning at v,,,, by 2. Given an infinite
path (e,)2, in Q, there is a unique loop class £; such that for all n sufficiently
large, e, is an edge in some loop class £,. The bijections from finite paths of length
n to P, induce a Lipschitz surjection 7: Q2> — K (note that the metric structure on
(2> is defined in §5.1, and depends on the edge weights). The space Q2> equipped
with the projection 7 is analogous to the space Z*° along with the projection 7.
Moreover, since the P, are partitions of K, 7 is nearly a bijection (it is injective
on all but countably many points), and while 7 need not be bi-Lipschitz, it is
close to being so in a heuristic sense. The main cost is that we must replace the
products of scalars in (3.1) with norms of products of matrices. This introduces
additional technical challenges, which necessitate the assumptions of irreducibility
and decomposability. These hypotheses are discussed in more detail in §4.1.

3.1. Partitions and net intervals. We write by Sim(R) = {f(z) =ax +b:a €
R\{0},b € R} the set of similarity maps from R to R, and equip Sim(R) with the
total order induced by the lexicographic order on the pairs (a,b) (or any other
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fixed total order). We then denote by Sim*(R) the set of finite tuples (fi, ..., fi)
where f; < --- < f,, and m € Nis arbitrary.

Definition 3.1. A basic iteration rule is a map ® which associates to each tuple
(fi,-.., fm) in Sim*(R) a tuple (Cy,...,C,,) where each C; is a finite subset of Z*
satisfying the following condition: for all n € N sufficiently large, every o € 7"
has a unique prefix in C;.

A good example to keep in mind is the basic iteration rule ®(fi,..., f,) =
(Z,...,Z). This example is discussed in more detail in Example 3.7.

Given a closed interval J C R, we denote by 7; the unique similarity 7;(z) =
rz + a with r > 0 such that

TJ([()? 1]) =J

Of course, r = diam(J) and « is the left endpoint of J.

Using the notion of a basic iteration rule, we can inductively construct a
hierarchy of partitions of K as follows. First, suppose we are given a pair (A, v)
where A = [a, ] is a closed interval and v = (f1,. .., fi) € Sim*(R). Let

Y=Y(Aw) =|J{TaofioS :reC,1<i<m}
(3.2) =

Y =Y(Av) = {;, b} U{g(2) :g€V,z2€{0,1},9(2) € A}

and write the elements of Y asa = y; < -+ < yxy1 = b. Order the intervals
{lyi, Yis1] + (Wi, yiz1) N K # 0} from left to right as (A4, ..., A,). We then define
the children of A (with respect to ®) as the set of pairs (A;, v;) where v; is given by
ordering the distinct elements of the set

(3.3) {Trlog:ge Y g(K)NA] #0}.

We call the net intervals A,; the child net intervals of A. If A; = [a;, b;], the position
index is given by ¢(A;,A) = (a; — a)/diam(A). The position index is used to
distinguish distinct children of A with the same neighbour set.

Now, using the above procedure, we can inductively construct our net intervals
and neighbour sets. Begin with the pair {([0, 1], (id))} = V,. Having constructed V),
for some n € NU{0}, we denote by V,,,; the set of all children of pairs (A,v) € V,,
and letV = J;~, V,. Set

Pn={A:(Av) € V,},

which is the set of all net intervals at level n. Since the net intervals are disjoint
except on endpoints, one may think of P, as a partition of K.

Note that distinct intervals A overlap at most on endpoints, and for each z € K
and n € N there is some A € P, with z € A. Given some (A,v) € V,, we say
that A is a net interval of level n, and that v is the neighbour set of A. We refer to a
similarity f € v as a neighbour of A. When the level n is implicit, we write V(A)
to denote the neighbour set v. For an example computing the net intervals and
neighbour sets, see Example 3.7.
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We make two basic observations which follow immediately from the construc-
tion by an induction argument.

e Let (A,v) € Vwith f € v. ThenTp o f = S, for some o € Z*.

e If [a,b] = A € P, there exists some (A, v) € V, with k < m and f € v such
that a = T, o f(z) for some z € {0, 1}. The same statement also holds for b.

Here is a short example illustrating the net interval construction, along with these
two observations.

Example 3.2. Consider the IFS given by the maps

2 2
SZ(-’B):z‘i‘_ Sg(l'):z—l——

Si(w) = 379 373

L
3
along with the basic iteration rule given by ®(f1, ..., f,) = (Z, ..., Z). By definition
of ¥,

y([O, 1], {ld}) = {T’[Ql] oidoS;:1i € I} = {Sl, So, 53}

and, expanding the definition,
215 2
Y ([0,1],{id}) = {Si(z) : i € Z, 2z € {0,1}} = {0, 9393 1}.

Note that (2/3,1) N K = 0 (since (2/3,1) N S;([0,1]) = 0 for each i € Z), so the
children of A have net intervals A; = [0,2/9], Ay = [2/9,1/3], A3 = [1/3,5/9], and
Ay = [2/3,1]. These net intervals are depicted in Figure 3 along with their positions
relative to the intervals S;([0, 1]) for i = 1, 2, 3. For illustrative purposes, we also
compute V(Ay). We have Ty, (z) = #/3 4+ 2/9 so that T'(z) := T,y (z) = 9z — 2 and

V(Ag) ={Tx 0g:9€V,g(K)NAS#£0} ={ToS;:i=1,2}
={r—T(x/3),z— T(z/3+2/9)} ={x+— 3z — 2,z — 3z}.

If, furthermore, we wanted to compute the children of A, in P,, we would begin
by computing

y(A27V(A2>) = {TAQ Ofo Sl RS I?f S V(AZ)}
:{SZ'OS]‘ 11 € {1,2},] GI}

and then continue as above.

In order to avoid certain degenerate situations, we require two additional
assumptions on the basic iteration rule ®.

Definition 3.3. Let ® be a basic iteration rule. We say that ® is an iteration rule if

(i) lim max max  rdiam(A) =0, and
n—00 (A,w)eVy, {z—raz+a}ecv

(i) if (A,v) € Vand f1 # fo € v, then for any o € Z*, we have f; 0 S, # fo.
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~

Ay Y Ny =i

Relle)]
—_

: : Az ? < Ay
0 2 1
9 3

FIGURE 3. Net intervals in P; as described in Example 3.2.

Note that if f € V(A) is any neighbour, then f(z) = ax + b for some a > 1. Thus,
(i) implies that the diameters of net intervals also tend uniformly to zero. In fact,
since K C [J, <P, A and the endpoints of each A are elements of K,

ﬁ U a=x

n=0 AeP,
We now have the following basic lemma.

Lemma 3.4. Fix some pair (A,v) € V,.. Then for each f € v, f(K) N (0,1) # 0, and

(3.4) A°NK =AN|JTao f(K).

fev

Moreover, if o € I* is any word satisfying S,(K) N A° £ 0, there is a unique word T
such that Ty' o S, € v and either T is a prefix of o or o is a prefix of T.

Proof. We prove (3.4) by induction on n. The case n = 0 is immediate, so
now let (A,v) € V, have parent (A’,v') € V,_1. Write v' = (f,..., fin) and
®(v') = (Cq,...,Cy). Note that by definition of @, for each i,

K =[] S,(K).

geC;

Thus by the inductive hypothesis,

(AN K = (N0 Taro fio S, (K).
i=10eC;
But by construction, if Tar o fi 0 Sy(K)NA° # (), then Ty' 0o Tar o fi0 S, € v, so the
result follows.

For the second part, the existence of the word 7 follows by construction, and
uniqueness follows from (ii) in Definition 3.3. O

We now have the following fundamental result, the proof of which is similar to
[ , Theorem 2.8]. We include the main details and leave additional verification
to the reader.

Proposition 3.5. Let (f;)icr be an IFS with basic iteration rule ®. Then for any A®Y) €
P, with child net intervals (A, ..., AY), if A® e P, where V(AD) = V(A®) has
child net intervals (A?), e Ag;), then my = mq and for each 1 <i < m,
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i) V(AY)y =v(a?),

)

(i) q(AW A(l)) (A AP and

7

(iii) diam(A®)/diam(AM) = diam(A®)/ diam(AP).

7

Proof. For each j = 1,2, let )}, Y; correspond to the set AU as in (3.2) in the
definition of children. Then with ) = T\ o TA‘(IQ), wehave Y) = {¢pog: g€ W}
and ¢(Y;) = Y;. Thus with the elements of Y] in order as y; < -+ < yg11, the
elements of Y; are given in order as ¢)(y1) < - -+ < ¢¥(Yk41)-

Now since

(AP A K = (AD)n U Thi o f(K)

fev

from Lemma 3.4, it follows that v: A® N K — A N K is a surjection so that
(yz‘, yi—l-l) NnK 7é @ if and O]flly if (w(yz), ﬂ’(%ﬂ)) NnK 7é (Z) Thus myp = Mma.
From here, (i), (ii), and (iii) follow by direct computation. 0J

Remark 3.6. Sometimes, it can hold that (A, v) has a unique child (A’, v) where
A = A’. For technical purposes, in order to avoid this degenerate situation, it
is convenient to redefine the iteration rule ¢ as follows. Write v = (f1,..., fim),

= (g1, -.,9x), and suppose ¢(v) = (Cy,...,C,) and ®(v') = (C},...,C;,). Since
A = AN, for each f; and o € C,, either f; 0 S,(K)NA° =0 or f;0S5, = g; for some j.
Now foreach1 <i<mand o € C;, set

= J0} fieSe(K)nA° =10
1,0 C] ZinSo,:gj

and define

Ci = U{JT T €U}

oc€eC;

Then define ® by ®(v) = (Cy,...,Cn), and & = & otherwise. It is straightforward
to verify that & is an iteration rule, and with this definition, the children of (A, v)
with respect to ® are precisely the children of (A’,v') with respect to ®.

Note that an infinite sequence of children where all the net intervals are iden-
tical is disallowed by (i) in Definition 3.3. Repeating this construction, we may
thus assume that each net interval A has at least two distinct children, and for any
A € P, there is a unique n such that A € P,,.

We conclude with two examples explaining the relationship with our general
net interval construction and earlier net interval constructions. In practice, all
iteration rules the author has used fall into these two classes.

Example 3.7. As discussed, the rule

O(fr,.... fm)=(Z,...,T)
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always defines an iteration rule. Here, the neighbour sets and net intervals can be
described in a slightly different way. Enumerate the points {5,(0), S,(1) : 0 € "}
in increasing order as 0 = yy < 1 < - -+ < Yy(n) = 1. We claim that

(3.5) P = {lyi> yir1) : Wi, vir1) N K # 0,0 < i < s(n)}
and for a net interval A € P,
(3.6) V(A) ={Ty' oS, :0 €I S,(K)NA°# ]}

Let us prove that this holds by induction. When n = 0, (3.5) and (3.6) both hold
trivially. Thus suppose n € N is arbitrary and A = [a, b] € P,. From the definition
in (3.2) along with (3.5) and (3.6), we observe that

Y= J {TaofoSi:ie1}
fev(a)
= U {Syi 11 €T}
{o€Tm:S, (K)NACAD}
={Sy:0€I",S,(K)NA°#0,i €T}
={S, 7 €T S (K)NA° # D}

and therefore

Y = {a,b} U{S.(2): 2 € {0,1},7 € ", S, () € A}.

Thus the children of A in P, are precisely of the form given in (3.5), and if A, is
any child of A, from the definition (3.3) it has neighbour set

V(Ai):{TA_ilog:gey,g(K)ﬂAf%@}:{TA_iloST:TGI”H,ST(K)HA;’#@}

and (3.6) holds for A;. Since any net interval A satisfies A° N K # (), every net
interval in P, ; must be given in this way. Thus (3.5) and (3.6) hold for P, ;.

If each S;(x) = Az + d; for some fixed 0 < A < 1, the net intervals are the
same as those considered by Feng [ ], and our definition of a neighbour set
is closely related to the characteristic vector defined in that paper. See [ ,
Remark 2.2] for more details on this relationship.

Example 3.8. Given a tuple of similarities (fi, ..., f,,) with each f;(z) = a;z + b;,
let a = max{|a;| : 1 <i < m} and define

C, - T ail =a

{0} :as| <a
where we recall that () denotes the empty word. Then the map ®(fi,..., fin) =
(Cy,...,Cy,) defines an iteration rule which gives the net intervals and neighbour
sets as defined in [ , Section 2.2]. Indeed, with this construction, the rule

defining children of A described above coincides exactly with the notion of the
child of a net interval from [ , Section 2.3].
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3.2. The transition graph and symbolic representations. We begin by introduc-
ing some useful terminology from graph theory. By a rooted graph G, we mean a
directed graph (possibly with loops and multiple edges) consisting of a set V' (G)
of vertices with a distinguished vertex vt € V(G), and a set £(G) of edges. By
an edge e, we mean a triple e = (vy, v2, ¢) where v; € V(G) is the source, v, € V(G)
is the target, and q is the label of the edge e. The point of the label is to distinguish
multiple edges, but it is safe to imagine that the graph does not have multiple
edges.

A finite path in G is a sequence ) = (e1, . . ., e,) of edges in G such that the target
of each e; is the source of e;,1. We say that the length of 1 is n, and denote this
by |n|. A finite path is a cycle if, in addition, the source of ¢, is the target of e,,.
A (one-way) infinite path is a sequence (e;);°, where the target of each ¢; is the
source of ¢;;; for i € N. Given paths 7, = (ey,...,e,) and 72 = (€pi1, - - -, €nim), if
the target of e, is the source of e,,,1, the concatenation 1,1, is the path (e1, ..., €pim).
When it is convenient, we will abuse notation and treat edges as paths of length 1.

We say that a (finite or infinite) path is rooted if it begins at the root vertex vy,
and we denote by Q°°(G, ty00t) (resp. 2*(G, vroot)) the set of all infinite (resp. finite)
rooted paths. We simply write Q2°° and (2* when the rooted graph is clear from the
context. For any n € NU{0}, 2" denotes the set of all rooted paths of length n. We
say that n; is a prefix of n in Q* (resp. 2°°) if n = 7’ for some finite (resp. infinite)
path n'. Given a path v = (¢;)32; € 0>, we denote the unique prefix of v in Q" by
yln = (e1,...,en).

We now define the main object in consideration in this document. Fix a
WIFES (S;, pi)icz along with an iteration rule ®. Then the transition graph G =
g ((Si, Di)ieT, (ID), is a rooted graph defined as follows. The vertex set of G is the set
of all neighbour sets {v : (A,v) € V} with root vertex v, = {id} corresponding
to the net interval [0, 1]. Now whenever (A, v) has child (A’ v"), we introduce an
edge (v,v, ¢(A, A)), where the position index ¢(A, A’) is the label distinguishing
multiple edges between the vertices v and v'. This construction is well-defined by
Proposition 3.5. Given a vertex v € V(G), which is a neighbour setv = (f1,..., fi),
we write d(v) = m. For the remainder of this document, the set Q2> (and Q2*, Q")
will always be associated with the transition graph G

Now given a path n = (e1,...,e,) € Q7, there is a unique sequence of net
intervals (A;, v;), with Ay = [0, 1] where each (A;,v;) € V;, A4 is the child of
A;, and

€; = (Uiavi+17Q(Ai7Ai+1)>'

This follows directly by construction of the edge set of the transition graph G. Since
net intervals either coincide or overlap only on endpoints, this path is uniquely
determined by the last net interval in the sequence. Thus we may define a map
w: Q" = P, by (n) = A,.

Lemma 3.9. The map n: Q" — P, is a well-defined bijection for each n € NU{0}.

Given a net interval A € P, the symbolic representation of A is the path 771 (A) €
Q.
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Now given an infinite path v = (e;)2, € Q*°, there corresponds a sequence
of net intervals (A;)°, with A; € P; where Ay = [0,1] and A, is the child of A,
corresponding to the edge e, 1. Of course, A,, = 7(y|n). Since lim;_,, diam(A;) =
0, there exists a unique point in K, which we call 7 (v), satisfying

{r(v)} = ﬂ A

In analogy to the net interval case, we refer to a path v € =~ '(z) as a symbolic
representation of x. It is clear by construction of net intervals that the map m: Q> —
K is surjective. Note that 7 need not be injective, but if x € K has fibre 77 '(z)
with cardinality greater than 1, then z must be an endpoint of some net interval A.
In this situation, 7! (z) contains two paths. Since there are only countably many
net intervals, 7 is injective on all but at most countably many paths. We say that
is an interior point of K if 7~!(z) has cardinality 1.

3.3. Edge weights and transition matrices. For our purposes, perhaps the two
most important attributes of a net interval A are its diameter diam(A) and measure
p(A). Recall that we have a correspondence 7: Q" — P, taking rooted paths in
the transition graph to net intervals in R. Through this correspondence, we get
the corresponding “symbolic diameter” diam or and “symbolic measure” i o 7
defined on the set of rooted finite paths Q2*. In this section, we will define two
natural objects which takes values on £(G) which will allow us to encode the
functions diam o7 and j o 7 respectively in a way intrinsic to the transition graph.
We first describe diam o7 as a product of weights on edges.

Definition 3.10. The edge weight function for G is the map W : E(G) — (0, 1) such
that if the edge e corresponds to the child A’ C A, then W (e) = diam(A’)/ diam(A).
Given a pathn = (eq,...,e,), we write W(n) = W(ey) --- Wi(ey,).

Note that the edge weight is well-defined by Proposition 3.5 (see also Remark 3.6).
Of course, when A € P, has symbolic representation n = (e;)";,

diam(A) = diam(7(n)) = W(e1)--- W(en) = W(n),

so that diam o = W.

We now describe j o 7 as the norm of products of matrices associated with
edges. Let e € E(G) be an edge corresponding to (Ay, (f1,. .., fm)) the parent of
(As, (g1,-.-,0n)), and let ®(f1, ..., f) = (C1,...,C,) where P is the iteration rule.
For each (i,5) € {1,...,m} x {1,...,n}, set

g’i,j - {w GCZ . TAl OinSw :TAz og]}

Then the transition matrix is the n x m matrix T'(e) given by

(3.7) T(e);; = M . Z Do
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where we recall that fy is the pushforward of ;. by the function f. It is clear that
the transition matrix depends only on the edge e. We note the following important
observations.

Lemma 3.11. If e € E(G) is any edge, then T'(e) has a positive entry in each column.
Moreover, forany v € V(G) and 1 < i < d(v), there is an edge e with source v such that
T'(e) has a positive entry in row i.

Proof. Since each neighbour g; is of the form T, o Ty o f; 0 S, for some i and
(possibly empty) word o, each column of 7'(e) has a non-negative entry.

To see the second part, let A be a net interval with V(A) = v. Since TA((0, 1)) N
fi(K) # ) for each 1 < i < m, there is some child A’ C A such that Tx/((0,1)) N
Ji(K) # 0. Then if e is the edge corresponding to A’ C A, T'(e) has a positive entry
in row i by Lemma 3.4 and the definition of the transition matrix. O

Given a pathn = (ey, ..., e,), wewrite T'(n) = T'(eq) - - - T'(e,,). We write | T'(n)|| =
>_:; T'(n); to denote the matrix 1-norm.
Now fix a pair (A, (f1,..., fm)) € Va, let Q(A) = (q1, - - ., ¢m) Where

(3.8) ¢ = fipr((0,1)) Z Do

oel*
So=Taof;

Using the self-similarity relation of i, the definition of the iteration rule ®, condi-
tion (ii) in Definition 3.3, and Lemma 3.4 one can verify that

p(A) = QA

Now a similar argument as the proof of [ , Theorem 2.12] gives the following
result:

Proposition 3.12. Let (.S;);cz have associated self-similar measure y and fix an iteration
rule ®. Then ) om =T for every n € N, so if n € (1",

plm(n) = [T ()l -

Proof. Let A = m(n) and let  end at the vertex v. Given (A, v) € V,, there exists
a unique sequence (A;, v;) , where (A;,v;) € V;, A4y isachild of A;, and A,, = A.
Now for f € v,let Ta o f = S, for some o € Z*. Then one can write o0 = o0y ... 0, if

and only if o; € C;(;) where j(i) satisfies Ty o fj(zl)) =S, with v; = ( fl(i), Cee 7%))
Thus the entry of T'(n) corresponding to the index f is the sum of p, over all ¢
satisfying Ta o f = S,. O

We observe that the transition matrices are analogous to the role of the probabilities
(pi)ier as described in (3.1).

We conclude by mentioning the following straightforward but important prop-
erty of transition matrices.

Lemma 3.13. If n = mn, € Q* with ny € Q" then ||[T'(n)|| =, || T (n2)]|-
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Proof. By Lemma 3.11, every transition matrix has a non-zero entry in each
column, so a straightforward calculation shows that there exists some constant
a = a(ny) such that [ T(mne) || > a(m) [ T(m)]. On the other hand, | T(mm)]| <
| T ()|l |7 (n2)]] by submultiplicativity of the matrix norm. But there are only
finitely many paths in 2", giving the result. O

3.4. The finite neighbour condition. Throughout this section, we have made no
assumptions about the IFS (S;);cz or the transition graph G. We now introduce the
main restriction of this paper.

The finite neighbour condition was introduced in [ ] as a variation of the
generalized finite type condition introduced by Lau and Ngai [ ]. In general,
such “finite type” conditions attempt to capture the idea that an IFS only has
finitely many possible overlaps. It is known that the finite neighbour condition
is equivalent to the generalized finite type condition holding with respect to the
interval (0,1) [ ]. We introduce the following definition, which is a natural
generalization of the usual finite neighbour condition with respect to our more
general transition graph construction.

Definition 3.14. We say that the IFS (.5;);cz satisfies the finite neighbour condition
with respect to the iteration rule ®, or the ®-FNC for short, if the corresponding
transition graph is a finite graph.

Closely related to this finite neighbour condition is the weak separation condition.
This separation condition is satisfied if

(3.9) sup #{S, 17 Tmin < |1o] <1, SH(K) N (z —rx+71) £ 0} < 0.
zeK,r>0

The weak separation condition was introduced by Lau and Ngai in [ |; this
definition is not the original but equivalent by [ , Theorem 1]. Standard
arguments show that any IFS satisfying the ®-FNC necessarily satisfies the weak
separation condition (see, for example, [ ; 1). Moreover, when K is
a convex set, the weak separation condition implies that the ®-FNC holds with
respect to the iteration rule ® from Example 3.8 [ I

4. LOOP CLASSES, IRREDUCIBILITY, AND DECOMPOSABILITY

In this section, we introduce the notion of a loop class of the transition graph G, and
other related definitions. These definitions are required to state the main technical
assumptions (irreducibility and decomposability) which underpin the main results
presented later in this paper. We also discuss certain general situations in which
the technical assumptions are satisfied.

For the remainder of the paper (including this section), we will assume that
(Si, pi)ier satisfies the ®-FNC with finite transition graph G. Note that many
concepts in this section hold more generally for an arbitrary transition graph
G, but we do not distinguish this during the subsequent discussions for sake of
simplicity.
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4.1. Loop classes. Let G be a directed multigraph. Recall that a graph H is an
induced subgraph of G if H is the graph consisting of the vertices V(H) and any
edge e € E(G) such that e connects two vertices in H.

Definition 4.1. Let 1 be an induced subgraph of G. We say that H is strongly
connected if for any vertices v,w € V(H), there is a directed path from v to w. Then
H is a loop class (in G) if it is strongly connected, contains at least one edge, and is
maximal with these properties.

Now if H is a loop class, we say that H is simple if each vertex in H has exactly
one outgoing edge (in H). We say that H is essential if for any v € V(H) and
w € V(G), if there is a directed path from v to w, then w € V(H) as well.

Of course, any essential loop class is necessarily not simple. Note that distinct
loop classes have disjoint vertex and edge sets, but there may be vertices which
do not belong to any loop class.

Remark 4.2. Previous authors (e.g. [ ]) distinguished between loop classes
and maximal loop classes. In this document, our loop classes are always maximal.

Example 4.3. In Figure 1, the loop classes are given by {£;, £, L3, L,}. The loop
classes £; and £, are simple, while L; is not; and L4, being an essential loop class,
is not simple.

Since the transition graph G is a finite graph, there are only finitely many loop
classes. Given any path v = (¢;)2, € Q, there is a unique loop class £ such
that there is some NN such that for all £ > N, ¢;, is an edge in £. We say that v is
eventually in £ and denote the set of all such v by Q%.

We may now set

Ke={z e K:n Y2)NnQ¥ # 0} KMt ={zec K:n 'z) CQ¥F}.

Of course, for each x € K there is at least one loop class £ such that z € K, and
at most two such sets. Note that K is the topological interior of K (relative to
K) if and only if £ is an essential loop class. If + € K is an interior point, then
x € K" for a unique loop class L.

Our analysis is focused on two technical assumptions, which we call irre-
ducibility and decomposability. We discuss these assumptions in the following
two sections.

4.2. Irreducibility. Irreducibility can be loosely interpreted as a type of “measure
connectivity” within the loop class.

Definition 4.4. Let £ be a loop class. We say that L is irreducible if there exists a
finite set of paths H such that for any paths 7,7, in £, there is some v € H such
that n;y7, is a path and

1T Cmyme) || = 1T () I ()]

We say that the transition graph G is irreducible if every loop class is irreducible.
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Since L is a finite graph, by submultiplicativity of the matrix norm, one can always
guarantee that

1T Cnyn) IS 1T ) I ()]

On the other hand, establishing the lower inequality is more challenging. This
notion of irreducibility is motivated by various hypotheses studied by past authors
[ ; ]. We are not aware of any loop class of any IFS satisfying the finite
neighbour condition that does not satisfy this irreducibility hypothesis.

In the following lemmas, we observe that this technical hypothesis is satisfied
in a number of general cases.

Enumerate V(L) = {vy,...,v;}. Foreach 1 <1i,5 <k, let

A, ={e € E(G) : eis an edge from v; to v, } M;; = Z T(e)

EE.A@',]'

and define the block matrix

M,y -+ My
M=ML)=| "~
Mg, -+ My
The following proof is straightforward and included in, say, [ ]. Recall the

matrix M is irreducible if for each i, j, there exists some n = n(i, j) such that
(Mn)iyj > 0.

Lemma 4.5. Suppose the matrix M is irreducible. Then L is an irreducible loop class.

Proof. We first show for any vertices v;,v; € V(L£),1 < k <d(v;),and 1 < ¢ <
d(v;), there exists some path n = 7(4, j, k, ¢) from v; to v; such that T'(n),, > 0. Since
M is irreducible, there exists some n € N such that the entry of M" corresponding
to the index k, £ in the submatrix M, ; is strictly positive. In particular, there exists
some sequence i, . . ., u,_1 such that

(Mi,m ’ Muhm e Munflvj)k,é > 0.

But then by definition of M, there is a corresponding path 7 joining the vertices
Viy Vyys - - -, Uu,_y, U such that T'(n), ¢ > 0, as required.

Now let H denote the finite set of paths (i, j, k, ¢) constructed as above for all
possible values of 7, j, k, {. Let A denote the smallest strictly positive entry for any
n € H and let dp.x = max{d(v) : v € V(£L)} (which is also the maximum number
of rows or columns of any transition matrix 7'(e) where e € E(L)). Let 1,7, be
any finite paths in £. By the pigeonhole principle, there exists some k, 7, j, ¢ such
that T'(m ) > d2 | T(m) | and T'(n2) 0 > d2, [|IT(12)]]. Let ¢ € H be a path from

max max

the target vertex of 1, to the source vertex of 1, such that 7'(¢); ; > A > 0. Then

IT(méne)ll = T(1)riT(0)igT(02)5.6 = Adgas IT ()T (12)]] -
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On the other hand, the upper bound follows since

1T (ngna) |l < 1T (o) [HIT (n2) [| max{[ T (D)[| = ¢ € H}

by submultiplicativity of the norm. O

We next observe that an essential loop class is always irreducible.
Lemma 4.6. Let L be an essential loop class of G. Then L is irreducible.

Proof. In fact, we will show for any v,w € V(£) and 1 <i < d(v), there exists
some path v from v to w such that row i of T'(y) is strictly positive. The required
result will then follow by the same argument as Lemma 4.5.

Let A be any net interval with V(A) = v and neighbour set v = (fi, ..., fiw))-
Since Tao f; = Sy, for some oy € Z* with S, (K)NA®° # (), there exists some word o
with prefix o such that S, C A. Let U = (v —r, v + ) attain the supremum in (3.9)
with words 71, . .., 7 satisfying 7 ryim < |7, | < rand S, (K)NU # . Observe that
S,(U) also attains the supremum in (3.9) with words o7, ..., o7. By condition
(i) in Definition 3.3 and since £ is an essential loop class, there exists some net
interval Ay C S,(U) with V(A;) = w such that if g is any neighbour of A, then
the contraction ratio 7T, o g is less than |r,|r. Let v be the path corresponding to
A; C A, which is necessarily a path from v to w in L.

It remains to show that row i of T'(v) is strictly positive. Let g € V(A,) be
arbitrary and let S, = Tx, o g; by choice of A, we have |r,| < |r,|r. Since
Su(K) N A° # 0, we have S,(K) N S,(U) # 0. Let £ be the unique prefix of w
with minimal length satisfying |r¢| < |r,|r. In particular, |r¢| > |r,|r - rmin and
Se(K) N S,(U) # 0, forcing Se = S,,, for some 1 < j < ¢ by maximality of .
Unpacking definitions, this means that there is some word ¢ such that

Th,09=2955,08s="Tao0 fioSy.

In other words, the entry in 7'(y) corresponding to the neighbours f; of v and g of
w is strictly positive. Since g was an arbitrary neighbour of A, the result follows.[]

4.3. Decomposability. Unlike irreducibility which, up to a fixed constant multi-
ple, states that one can join paths within a loop class without changing the norm
of the corresponding transition matrix, decomposability states that for a given
path passing through multiple loop classes, the norm is comparable to the norms
of the components of the path within each loop class it passes through.

We begin by defining the notion of an initial path and a transition path in the
transition graph G as follows. Let G have loop classes Ly, . .., £,, and root vertex
Uroot- Let 9 = (€1, ..., €,) be a path in G connecting vertices (vo, v1, . .., v,). We say
a path v is a transition path if

1. vy is a vertex in V' (L,) for some j,

2. v, is a vertex in V(L) for some k # j, and
3. each v; with 0 < ¢ < n is not a vertex in any loop class.
Similarly, we say that v is an initial path if we replace condition (1) with
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(1,) Vo = Vroot
There are only finitely many initial paths and transition paths since they cannot
repeat vertices.

By definition of the loop class, we can sort the loop classes Ly, ..., £,, in a (not
necessarily unique) order such that if ¢ is any transition path joining loop classes
L;and L;, theni < j. Now suppose n = (e, ..., e,) € 2" is any finite rooted path.
Then we can uniquely write

n= QS)\lwl s wm—lAm

for possibly empty paths ¢, 1;, \;, where ¢ is an initial path, each ); is a path in £,
and each 7); is a transition path. We call the tuple (A, ..., \,,) the decomposition of
the path 7.

Example 4.7. In Figure 1, an example of a valid order is L1, £5, L3, L£4. Note that
any decomposition can contain a maximum of 3 non-empty paths \; (correspond-
ing to the loop classes L1, L3, L,).

By convention, if ); is an empty path, we write ||T'(\;)|| = 1.

Definition 4.8. We say that the transition graph G is decomposable if for any path
n € QF with decomposition (A, .., \,,), we have

1Tl = TN 1T (M)

with constants depending only on the transition graph G.

We now discuss a few examples in which the transition graph G is decomposable.

Lemma 4.9. Suppose every transition path n has that T'(n) is a strictly positive matrix.
Then G is decomposable.

Proof. Since there are only finitely many transition paths, there exists a constant
C > 0 such that for any transition path ¢ and valid indices 4, j, T'(n);; > C.
But now if n € Q* has decomposition (\y,. .., \,,), we can uniquely write n =
dMY1 .. Ypm_1 Ay Where each ), is a transition path. Then by Lemma 3.13,

1Tl = T (@Xi¥r - - i A [ 2 1T (Mhr - i A |
> C" T IT )] -

Of course, C' and m depend only on G, so the lower bound holds. The upper
bound always follows by submultiplicativity of the matrix norm, since there are
only finitely many choices for the paths ¢, 1;. 0J

Lemma 4.10. Suppose that every vertex in a non-essential loop class is a neighbour set of
size one. Then G is decomposable.

Proof. By Lemma 4.9, it suffices to show for any transition path 7 that 7'(n) is a
strictly positive matrix. By definition of an essential loop class, if 7 is a transition
path from loop classes £; to £, then £; is non-essential. Thus by assumption, 7 is
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a path beginning at a vertex with neighbour set consisting of a single neighbour,
so that 7'(n) is a matrix with 1 row. Since every transition matrix has a positive
entry in every column by Lemma 3.11, T'(n) is a strictly positive matrix, so the
result follows by Lemma 4.9 O

We now establish an irreducibility type condition to guarantee that the transition
graph is decomposable when all non-essential loop classes are simple.

We begin with some general observations about non-negative irreducible
matrices. Let M be an irreducible matrix with spectral radius r. It is known that if
M is a strictly positive matrix, then the limit limy,_,, M*/r* exists [ ]. While
this limit need not exist in general if M is irreducible, using similar arguments,
one can show that there are constants c;, ¢, > 0 such that for all » sufficiently large,
either M, = 0 or

cr” < M7 < cor™.

In particular, suppose M;, ..., M, are irreducible matrices and A, ..., A, are
such that A = Ay M - - Ay M"™ A1 # 0. Then for all n; sufficiently large, if M,
has spectral radius r;, either A;, = 0 or

rit

(41) A]}f N AL Art o 'Tgk‘

This observation is the main idea in the following result.

Lemma 4.11. Suppose every non-essential loop class is simple. For each simple loop class
L, suppose there is a path 0 in L beginning and ending at the same vertex such that T'(0)
is an irreducible matrix. Then G is decomposable.

Proof. For simplicity, we assume there is a unique essential class; the proof in
the general case follows similarly. Denote the simple loop classes by L4, ..., Ly,
and for each 1 < <k, let 0, be a cycle in V(£;) such that 7'(6;) is an irreducible
matrix. Let 7°(;) have spectral radius r;.

If n € Q* is an arbitrary path, it has decomposition of the form (A, ..., Az, §)
where \; = %(1)9;“7(2)

(2

with n; maximal and ¢ is a path in the essential loop class.
Since n; is maximal and £; is simple, the paths 71(1) and fyi@) have length at most
the length of 6;, so there are only finitely many possible paths 72-(] ). Thus by (4.1),

17|~ i

)

Now, we may write

n= @0y 165° ... G g

where ¢ = ¢/ %1) with ¢ an initial path, and each ); is of the form 752)1/127&)1 for
i < kor 7,&2)%, and the paths ¢} are transition paths. Of course, some of the paths

%(j ) or Y; may be the empty path. The point here is that there are only finitely
many possible choices for the paths ¢, v, ..., y, independent of the choice of 7.
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It always holds that | 7'(n)[| < [|77(A)] - - 1T (M) || IT(€)]]. Thus it suffices to
show that

[Tl Z " 1T )]
Let M = T(p87" 1057 ... 0, *y). By (4.1), for each index j, ¢, either M,;, = 0 or
M=tk

But now if 7'(§) has maximal entry 7'(¢),,, we have | T(§)|| 2 T(£),4 Since
column p of the matrix M has a non-negative entry by Lemma 3.11, get p’ such
that M,y , 2 r* ---r.* and

~v

1Tl = 1M - Tl = My pT(E)pg Z 71" -~ 7" ITE)]

as required. O

5. LOOP CLASS SPECTRA AND A MULTIFRACTAL FORMALISM

5.1. Measures and metric structure on paths in the transition graph. The set 2>
of infinite rooted paths has a natural metric space structure given by the weights.
Given paths 74, 72, define

d(y1,72) = inf{W(n) : n a prefix of v, and 72 }.

The topology is generated by the closed and open cylinders

(7] = {y € Q" : n aprefix of v}.

It is easy to see that this space is compact and totally disconnected. Of course,
7([n]) = 7(n) N K where we recall that 7(n) is the net interval with symbolic
representation 7. It is productive to interpret the space 2*° with the above metric
as a “separated” version of the set K.

We have the following straightforward result:

Lemma 5.1. The map 7 : Q> — K is Lipschitz with constant 1.

Proof. Let v, and 7, be two distinct paths in 2°° with maximal common prefix
n € 2", so that d(v,72) = W(n). Let A € P, have symbolic representation 7. By
definition, W (n) = diam(A). But then 7(v;), 7(72) € A so

[7(71) = ()] < diam(A) = W(n) = d(y1,72)
as required. O
Our general philosophy is to establish multifractal properties of the space > (in

terms of the corresponding subspaces (27 defined below), and then translate these
results to the self-similar measure ;.. However, the main difficulty in establishing
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corresponding multifractal results is that the map  is not in general bi-Lipschitz
(even when restricted to the maximal domain on which it is injective). Many of
the technical results in the following sections are established to overcome this.

Since the graph @ is not in general strongly connected, we will study subspaces
of Q> corresponding to the loop classes. Fix a loop class £, and let ( € Q" be a
tixed path which ends at a vertex v in £. Recall that Q¥ is the set of infinite paths
eventually in the loop class £. Now, define the set

Qrc = {y € QF : (is a prefix of v}

This is a compact subspace of 2> (note that the sets 2% need not be compact). We
also define the analogous sets

Qp o= 1{n € Qp : (is a prefix of n}

consisting of finite, rather than infinite, paths. Often, given n Q7 -, we will abuse
notation and write [n] to denote the cylinder [n] N QF, C Q.

Suppose A = 7(() is the net interval with symbolic representation ¢. Then one
can verify that

T(0%) = K:NA.

We now turn our attention to the measure p. Since distinct net intervals in the
same level overlap only on endpoints and the self-similar measure ;. is non-atomic,
one can verify that the rule

p(m(n)) = [T ()l

for paths € 2* extends to a unique Borel measure on 2. We would like to
restrict this measure p o 7 to the subsets (27 in a meaningful way. However, it
can happen that these sets can have measure 0 in 2*: in fact, they have non-zero
measure if and only if £ is an essential loop class.

Regardless, it is convenient to simply consider the measure ;. o 7 as being
defined on finite rooted paths (or the corresponding cylinders). With this in mind,
we define a function p: Q* — [0, 1] by the rule

p(n) = pom(n).

Now p restricts naturally to a function p: Q7 . — [0, 1], though this restriction is
not in general additive.

5.1.1. Loop class Li-spectra. We now use the function p to define an analogue of
the Li-spectrum of measures for loop classes.

To motivate this, we first state an equivalent formulation of the L?-spectrum of
p using the function p. Set

Ft)y={n=(e1,...,en) €Q* : W(ey...e,) <t <Wler...en 1)}
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One can think of the sets F(¢) as a “scale-uniform” analogue in 2> of the parti-
tions P,, (which may contain intervals with vastly different diameters). We then
have the following standard result, which is a weighted version of [ ,
Proposition 4.3] or [ , Proposition 5.6]. We include the main details for the
convenience of the reader.

Proposition 5.2. Let yu be a self-similar measure satisfying the finite neighbour condition.
Then

lo q
7.(q) = lirtn ionf & anef(;) p(n)

Proof. First suppose © € K and ¢t > 0 is arbitrary, and let { B(z;,t)}; be any
centred packing of K. If n € F(t) has x € n(n), we always have 7(n) C B(x,t), so
forg <0

> p) =) u(Blwit))".

nEF(t)

On the other hand, for ¢ > 0, since there are only finitely many edge weights,
there is some N such that #{n € F(t) : n(n) N B(x,t) # 0} < N. Since a given
net interval 7(n) overlaps with at most 2 distinct balls in { B(z;,t)};, for ¢ > 0 by
Jensen’s inequality

ZM(B(xi,t))q < Z( > p(n)>q§q > o).

neF(t) neF(t)
m(n)NB(zi,t)#0
Thus

lo q
7,(¢) > lim inf gznef(t) p(n) '
t—0 10gt

Conversely, suppose A = 7(n) is some net interval, where n € F(¢). If f is
any neighbour of A, since f(K) N (0,1) # 0, there exists some word some ¢ > 0
and 7 € 7* depending only on f such that f o S (K) C (¢,1 —¢)and 0 < 7, < e.
Since there are only finitely many neighbour sets, and hence only finitely many
neighbours, we may assume € > ¢, > 0 and p, > py > 0 for some fixed €, po.

Now by Proposition 3.12 along with (3.8), there is some M > 0 fixed such that
thereis f € V(A) satisfying

But then by choice of 7, with x,, = Ta o f 0 5,;(0) € K and r,, = €|r,| diam(A), we
have B(z,,r,) C A and

p(n) = p(Bxy, 1)) = p(Tao fo S(K) 2 > popr 2 pln).

oc€EL*
So =Ta Of
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Thus the centred packing { B(z,, )}, satisfies

Z (B, )" 4 Z p(n)?.

neF(t) neF(t)

But r, ~ t,so forany q € R,

lo q
Tu(q) < 111211 ig1f gznlef(;) p(n) .
— Og

This gives the desired result. 0

When ¢ > 0, for any “sufficiently uniform” (e.g. dyadic) partition of K, one
may always define the L?-spectrum of any finite measure with respect to such
a partition (see, for example, [ , Proposition 3.1]). When ¢ < 0, such an
operation is more delicate since the intervals in a partition can intersect K on sets
of disproportionately small yi-measure. Proposition 5.2 essentially states that the
partitions {r(n) : n € F(t)} of K for ¢t > 0 avoid this issue.

Now for t > 0, and ¢ and £ defined as above, set

Fret) =F(t)N Qg
We then define

log )" p(n)?
1: WEFL,(:(t)
7e¢(g) = lim log { :

We have the following basic lemma. The argument giving existence of the limit is
similar to [ , Lemma 2.2].

Lemma 5.3. The function 1, (q) is a concave function of q, and the limit exists for any
q € R. Moreover, if (" is any other path ending in L, then 1, o = 7. .

Proof. Concavity is a standard application of Holder’s inequality. We now see
existence of the limit. Write A,(t) = >_ Feclt) p(n)?. All implicit constants below
may depend on the choice of (.

First suppose ¢ > 0 and set 79 = Wy, - min{W((y,) : w € V(L£)} where
Winin = min{W(e) : e € E(L)}. Suppose n € Fr c(rotit2), SO we may write n = n;¢
where 1, € Fr¢(t2). If ¢ begins at the vertex w, by choice of r, write ¢ = 1¢, such
that with 17, = (¥, n2 € Frc(t2). Observe that W(¢y) ~ 1y so there are only
finitely possible values of ||7'(¢¢)||. Thus by Lemma 3.13 we have ||T'(¢))|| = p(12)
so that

p(n) < pm) ITE)INT (@)l < p(m1)p(n2)-

Thus A, (rotite) S, Ag(t1)A,(t2) so the limit exists for ¢ > 0 by submultiplicativity.

Now suppose ¢ < 0. Let  end at the vertexv € V(£), and for eachw € V(£), let
7w beapathin £ from v to w. Givenn; € F.(t;) fori = 1,2 and ¢; sufficiently small,
write 1y = (¢, so that W (¢2) =ty and ||T(¢2)|| = || T(n2)|| by Lemma 3.13. Then if
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the path 7; ends at the vertex w, 7,7, ¢2 is an admissible path with W (1;7,¢2) ~
t1ts, so there exists some fixed o > 0 such that W (n1v,¢2) > rot1t2. Thus get a
path ¢ with W (1) = ry such that n,7,¢2¢ € Fr ¢(rot1t2), and by Lemma 3.13

p(mYwd20)? Zq ITr) T @)D - p(m)?p(n2)”.

But £ is a finite graph (so there are only finitely many paths ~,,) and W (¢) ~
(so there are only finitely many paths ). Thus A,(t1)A,(t2) Sq A4(rotite) and the
limit exists for ¢ < 0 by supermultiplicativity.

To see the final claim, suppose ( ends at the vertex v and ¢’ ends at the vertex
v" where v, v’ are both vertices in £. Let ¢ be any path in £ from v to v'. Let
W Q7(¢") — Q- be given by ¥(('n) = (¢n, and note that

(5.1) Y (Fro (W) € Fro(W(CoN).
Now if ¢'n € 2} ., by Lemma 3.13,

p(W(Cn) = ITConll = Tl = 1Tl = p(¢'n)
and combining this with (5.1) yields

Yootz D>, e

n€F, o (W(()D) n€Fc,c(W(Co)t)

Since ¢, (', and ¢ are fixed , it follows that 7. :(q) > 72,¢/(q). The reverse inequality
follow by the same argument with the roles of  and (' swapped. O

Proposition 5.4. Suppose L is an essential loop class of G. Then if A is any net interval
with neighbour set V(A) € V(L), with v = p|a, we have

7e(q) = 7.(q).
In particular, 7;(q) = 7,(q) for any ¢ > 0.

Proof. This follows by the same argument as Proposition 5.2, observing that
if ¢ € Q" is a path ending in an essential loop class £, then n € Q7 . if and only if
n € " and ( is a prefix of 7.

That 7.(q) = 7.(q) for ¢ > 0 follows by standard arguments (see, for example,
[ , Proposition 3.1]). O

Remark 5.5. In fact, using arguments similar to the proof of [ , Theorem 4.5],
one can show that if £ and £’ are essential classes, then 7, = 7,/. In practice, with
the standard choices of iteration rules given in Example 3.7 and Example 3.8, there
will always be a unique essential class.

5.1.2. Loop class local dimensions. Given an infinite path v = (e,)22, € Q°°, recall
that y|n = (e1,...,e,) € Q". We then define

. .. logp(y|n)
d = liminf ~=0 s
dimy, (p, ) = lim in log W (7|n)
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with similar definitions for the (upper) local dimension. With this, we define

Erc(a) = {y € QF : dimy.(p,7) = dimiec(p, 7) = a}.
Now let fz . : R = RU{—o00} be given by

freola) =dimy Bz ¢ (o).

Note that £ ((«) may be the empty set; by convention, we write dimpy ) = —oc.
Following the theme for L?-spectra, we have the following easy result.

Lemma 5.6. If L is a loop class and ¢, (" € Q2* both end in L, then

feela) = frola).

Proof. Let  end at the vertex v and (' end at the vertex v, and let ¢ be a path
in £ from v to v'. Now if {'y € QF((’), then (¢ € Q7 and by Lemma 3.13,

dimy,.(p, ¢'y) = dimy,.(p, (P7).

Moreover, it is straightforward to verify that the map ¢’y — (¢~ is bi-Lipschitz
on its image, so that f. (o) > fr(a) for any «. The same argument yields the
converse inequality, as required. O

5.2. Multifractal formalism for irreducible loop classes. We maintain notation
from the previous section, recalling that ¢ € Q2* is a path ending at a vertex in the
loop class L.

In light of the results in the previous section, the following notions are well-
defined.

Definition 5.7. We define the loop class L?-spectrum, denoted by 7.(q), as 72(q) =
7z.¢(q). Similarly, we define the loop class multifractal spectrum by f(o) = fr ().

For convenience, we write

(5.2) tin(£) = Tim £ (L) = lim £

q—00 q q——00 q

The limits necessarily exist by concavity of 7,(¢), and a straightforward argument
shows that they are finite.

Our main result in this section is the following multifractal formalism, which
relates the multifractal spectrum with the L?-spectrum on the loop class.

Theorem 5.8. Let L be an irreducible loop class in G. Then f; = 7}.

In particular, f; is a concave function taking finite values precisely on the interval
[amin (£)7 Omax (;C)]

By definition, it suffices to show f.. = 77, for a path ( € " ending at a
vertex in L. There are many ways to prove this result. One could use a weighted
version of the arguments in [ ], which are proven in a similar irreducible
matrix-product setting. Another option is to follow the arguments in [ I

We find it most efficient to use the following result, which is a simplified
“symbolic” version of [ , Theorem 2.2].
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Proposition 5.9 ([ D). Suppose for any q € R such that the derivative 7/ -(q) = «
exists, there exist numbers b(q, k) and c(q, k) such that the following properties hold:
(i) We have limy,_,, b(q, k) = 0.
(ii) Suppose n € Nand n € F.(27"). Then for any m > c(q, k), there are distinct
paths ny, ... ,nn € Frc(27"7™) such that 0 is a prefix of each n;,
N > 9m(rz ((a)=b(g.k))

Y

and

gmirkc@+1/R) < PU) o oomrt c(@-1/k)

Then fr (o) = 77 (a) for each o € R.

We first observe the following standard counting lemma, which is similar to [ ,
Proposition 3.3], but the proof is easier.

Lemma 5.10. Suppose L is any loop class (not necessarily irreducible) and the derivative
77.c(q) = a exists. Then for any 6 > 0, there is to = to(0, q) such that for all 0 < t < t,,
there is F™*(t) C Fr (t) such that

(i) #F*(t) > 1 c(@)+o(al+1) g g

(it) t70 < p(n) <t for each n € F*(t).

Proof. Write A,(t) =3, Frclt) p(n)?. Since 77 (q) exists, get € > 0 such that
(a—09/2)e <|mrclgEe) —Tre(q)| < (a+d/2)e.

Let 0 < v < min{ed/6,6/2,1} and observe that 7 depends only on ¢ and ¢. Then
since the limit defining 7, . exists by Lemma 5.3, get ¢, depending on v and ¢ such
that forall 0 < ¢ < tg,

t7eclatz)+y < Aq-}-z(t) < teclatz)—y

for each z € {0, —¢, €}. Next, write F, (t) = F~(t) U F*(t) U F'*(t) where

F(t) = {n € Fee(t) s pln) <t°7°}  F(t) = {n € Fre(t) : pln) 2 127}
and F*(t) = Frc(t) \ (F~(t) U F'*(t)). By definition, (ii) holds for n € F*(t).

Combining the above inequalities gives that

Z p(n)? < Agpe()t070) < greclore/2—
neF=(t)

with the analogous inequality for F'*(¢). Then since 7, ¢ € (0,1) and v < /6,

Z p(n)q > ey _ 9pme.c(a)+ed/2—y > tTL,C(Q)+2’Y(t_"/ _ 2) > trec(a)+2y
neL*(t)

But now for each n € F*(t), we have p(n)? < max{t(@+e tla=d)a} — tea=dlal 5o that

#F*(t) > tfaq+6\fI| Z p(n)q > t_TZ,c(a)'M‘qHQ'V > t*TZ(a)Jr(SOq‘Jrl)
neF*(t)

since v < 0/2, giving (i). O
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Proof (of Theorem 5.8). Let ¢ € R with 7; (q) = o, n € Nand n € F(27").
First suppose we are given some large m € N and a path ¢ € F.(27). We
construct a path V(¢) as follows. Write ¢ = (4. By the irreducibility assumption,
there is a path v € H such that 7y = 1% is an admissible path and by Lemma 3.13

(5.3) p(no) = p(n) [T T @) = p(n)p(e).

Since W (ny) ~ 27" and W(¢) ~ 2~™, we have W (1) > 2-"~™ ™ for some m/’
depending only on the (fixed) choice of ¢. Again by the irreducibility assumption,
we can thus obtain ¥(¢) € F, (27"~ ™) such that 7, is a prefix of ¥(¢) and
p(¥(4)) = p(no). Let C be a fixed constant such that C~'p(¢) < p(V(¢))/p(n) <

Cp(o).
Now by Lemma 5.10 with constant 6 = 1/2k such that for all my > ¢(q, k)

there are paths qbl, o 7¢N c ]:L,C(2_m0) Such that N Z 2m0(72,¢(a)*(|Q|+1)/2k) and
2 mo(a+l/2k) < p(g;) < 27mole=1/2k) Now with m = mg +m’ and n; = ¥(¢;), we
observe that ny,...,nn € Fr(27"7™) and

N > gmo(Tz 4(e)—(la[+1)/2k > om(tz (@) —(lg[+1)/k)
and

p(n;) < Cp(¢y) < (19 —mo(a—1/2k) < 9—m(a—1/k)

with a similar lower bound, for all m > ¢y(q, k) + m' sufficiently large depending
only on fixed quantities. Thus the conditions for Proposition 5.9 are satisfied,
giving the desired result. O

5.3. Regular points in level sets of local dimensions. As before, we fix a path
¢ € Q" ending at a vertex in the loop class L.
Recall that

Erc(a) = {y € QF : dimy, (p,7) = dimiec(p, ) = a}.

We wish to show that the set E () can be approximated (in the sense of dimen-
sions) by sets of points which have particularly nice properties.

Definition 5.11. Let £ be a finite path (not necessarily rooted) in G. We say that
a path v = (e,)52, € Q> is {-reqular if there exists a monotonically increasing
sequence (n;)32; C N such that ¢ is a prefix of (e,,;, en;41, . . .) for each j and

lim 9+
j—00 nj

This will be of key importance in §6. The proof of the following result is very
similar to [ , Proposition 3.2], so we are somewhat terse with details. The
irreducibility hypothesis is critical in order to obtain this result.
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Theorem 5.12. Suppose L is an irreducible loop class and ¢ € 0* a path ending at a
vertex v in L. Then for any o € [umin(L), amax(L)] and finite path £ contained in L
beginning at the vertex v, there exists ) # ' = I'(¢) C E ¢(«) such that

dlmH I'= lelH Eﬁ@(&) = f[:(Oé)

and I is composed only of {-reqular points.

Proof. If L is simple, this result is immediate.
Otherwise we assume L is not simple. All cylinders in the proof are taken
relative to Q7. Set

Fast,e) = {n € Fre(t) 1197 < p(n) <127}

G(a;s,€) = ﬂ U ]

0<t<s neF(at,e)

Of course, if y € E;(a), for any € > 0, v € G(a;t,¢€) for all ¢ sufficiently small
(depending on €) and thus

Erc(e) € | JGlass,e).
s>0

Since each cylinder [] where € F(«;t,€) has diameter W (n) ~ ¢, for any s > 0
and € > 0,

log #F(a; t
dimy G(o; 5,€) < dimpG(a; ,€) < lim inf BFEEE)
t—0 —logt

This holds for any ¢ > 0. Thus by countable stability of the Hausdorff dimension,

. e log #F(ast€)
(5.4) dimy Pe(a) < liminflip nf == 5=

We now turn to the construction of the set I'. For the remainder of this proof,
unless otherwise stated, all implicit constants may depend on the (fixed) paths
¢ and £. Let 6 > 0 be arbitrary. By (5.4), there are strictly monotonic sequences
(t;)32, C (0,1) and (¢;)52, both tending to 0 such that

log #F (o tj,€;)

(5.5) ot

> dimpg EﬁK(O{) -0

for each j € N. Define a sequence {t;}32, by

PUUTER 700 2TV SUUUEE PSR T
——— N—— N——
N, Ny N;

where N; is defined recursively by N; = 1 and, for j > 2,

N] — 2— logt]-_,_l—&—Nj_l .
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For each i, let A; denote the set of indices j € N where t; =1t Sete; = ¢ when
tr =t,.
J (2
Since there are only finitely many vertices in £ and finitely many possible
dimensions of transition matrices, by the pigeonhole principle, for each j, there
exists an index (m;,n;) and a subset G; C F(a;t}, ¢;) such that each path in G
begins and ends at the same vertex and #G7; 2 #F(a, t,€;). Let n; = n; when
=t
J (2
Recall that the path ¢ begins at vertex v. There exist constants C', D > 0 such
that by repeatedly applying irreducibility of £, for each path n; € G, there exist
paths ¢(n7), 1 (n;) € H such that the following two conditions hold:
(i) the path 0(n;) == {é(n;)n;v(n;) is a cycle beginning and ending at vertex v,
and
(ii) for any v = 0(n7) ... 0(n;)n' where 1/ is a prefix of 6(n;, ),

k+1

D*TTIT@OI = 1T ()] = C’“H 17 (07

i=1

Then let forn € N

={[CO0;)...0m)] = (nf,....m;) € HG*

which is a nested sequence of families of cylinders, and set

-NUr

n=11eG,

A direct computation shows that I's C X(«).

We now show that dimy I's > A(a) — d. By [ , Proposition 3.1] (the
technical assumptions are immediate to verify), dimy I's = lim infj,_, ., a; where ay,
satisfies

> Wnt...np)®™ = 1.

(07 5--m)EG1X X Gy,

Let 1 < j <k and choose i such that j € A;. As {is fixed, W(0(n;)) = W (n;) ~ t;
and 7] € F(a;tj,€;) son; € Fi:(A) = Fy, (A). Let r > 0 be such that W (n;) > rt;.

’]’J

Thus since (t;) — 0 and #F(a, t€5) = oo,

k
lo G}
dimg I's > liminf gH 1 #
B2 S log I, (1)

—k +lo F(a;t:, e
> lim inf gH] Rl J j)
k—o0 logHJ 1 ]
lo F(a;ts, e
= liminf gH] 1 #F(a J J).
k—oo _logHJ 1 ]
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Now by definition of the N; and (5.5), it follows that
dlmH F(s Z dlmH Egc(oz) —0

as claimed. Take I = | J.7, I's-», and the result follows. O

6. MULTIFRACTAL ANALYSIS OF SELF-SIMILAR MEASURES

We continue to use the notation of the previous section. We fix a WIFS (S}, p;);ez
with self-similar measure (. In particular, we assume that ® is an iteration rule
with corresponding finite transition graph G, as described in §3.4.

6.1. Local dimensions and regular points. Intuitively, the multifractal analysis of
self-similar sets satisfying the finite neighbour condition is related to the multifrac-
tal analysis results for loop classes from the preceding section. However, the exact
relationship is somewhat more complicated to establish: while the local dimension
of p at a path v depends only on the single sequence of edges determining -, the
local dimension of p at a point # € K can also depend on net intervals which
are adjacent to net intervals containing x. This happens when z is the shared
boundary point of two distinct net intervals, but it can also happen when z is an
interior point approximated very well by boundary points (so that balls B(z,r)
overlap significantly with neighbouring net intervals, for infinitely many values
of r).

In order to better understand this adjacency structure, we introduce the notion
of the approximation sequence of an interior point, as well as the set of regular
points Kp C K. Let x € K be an interior point, which we recall means that
7w (z) = {7} is a single (infinite) path. Let (A;)3°, with Ay = [0, 1] and each A,
a child of A; denote the sequence of net intervals corresponding to 7. Of course,
A, = m(v|n). Given some i and [a,b] = A1 C A; = [¢,d], by the reductions
described in Remark 3.6, exactly oneof c = ¢ < b < d, ¢ < a < b = d, or
¢ < a < b < dmust hold. Moreover, since x is an interior point, it cannot hold
that all A share a common left (resp. right) endpoint for all sufficiently large %
where the left (resp. right) endpoint is also the right (resp. left) endpoint of some
adjacent net interval. In particular, there exists a monotonically increasing infinite
sequence (n;)32, such that there exists a neighbourhood of A, 5 in K which is
contained entirely in A, .

We now make the following definition:

Definition 6.1. Given an interior point z € K, we call the sequence (n;)52, de-

scribed above the approximation sequence of x. We then say that z is reqular if its
approximation sequence satisfies

lim FL — 1,
J—=o0 Ny
We denote the set of regular points in K by K.

The intuition is that interior points in K which are approximated very well by
boundary points are contained in long sequences of net intervals which share left
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endpoints or right endpoints, so that regular points are those which are poorly
approximated by boundary points.

The main point of the approximation sequence is that = is bounded uniformly
away from the neighbouring net intervals of A,,; = 7(|n;) for each j € N. To be
precise, we have the following lemma.

Lemma 6.2. Let x be an interior point with approximation sequence (n;)32,. There exists
some R > 0 depending only on the IFS and m = m(R) € N such that, for any j € N,

Apym € Bz, R-diam(A,,;)) N K C A,,.

Proof. Since there is a neighbourhood of A, > in K contained entirely in A,,,
either A, 1, C A;j or A, 1o shares an endpoint with A, but there is no other
adjacent net interval in P,,,. We only treat the first case; the second follows by
similar arguments. We recall by Proposition 3.5 that the position index ¢(A;;1, A;)
depends only on the neighbour set of A;. Thus if we write A, ;> = [a,b] and
A,, = [c,d] where a < ¢ < d < b, there are only finitely many positive values for
(c—a)/(d—c)and (b —d)/(d — ¢). The existence of R follows.

Moreover, recall that W (e) = diam(4;)/ diam(A;,1) when A, is the child of
A; corresponding to the edge e. Therefore, with W,,;, = min{W(e) : e € E(G)}, it
suffices to take m such that W2 < R. O

Using the approximation sequence, we can establish some basic relationships
between local dimensions and their loop class analogues. A similar version of the
following result was first proven in [ ].

Proposition 6.3. Suppose x is an interior point with unique symbolic representation .
(i) We always have

dimy, (1, ) < dimyo.(p,7) < dimioe(p, ) < dimuge(p, 7).

(i) If dimyee(p, ) exists, then dimyo. (i, ) = dimyee(p, 7).
(i1i) If dimy.(p1, x) exists, then dim, . (p,v) = dimiee(p, ).

Proof. 1t suffices to show (i), since it is clear that (ii) and (iii) follow directly.
For each ¢t > 0 let n(t) be minimal such that W(y|n(t)) < t. Then if A; =
7(yn(t)), we have A; C B(x,t) so that

— | Bz, t 1 t
dirnloc (,U, x) = lim sup M S lim sup M
=0 logt a0 log t

= di—mloc(/oa )-

Replacing the limit superior with the limit inferior, we also have that dim; (¢, z) <
dimy,.(p,7)-

To get the remaining bound, let « have approximation sequence ()72 ; and let
R, mbe as in Lemma 6.2. We then have, since W (v|(ny + m)) ~ pW (y|ng),

- 1 Bz, t
dimyo(p, ) = lim sup —ogu( (z,1)
-0 logt
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< 1 sup 8B R W (1))
. log p(7|(nk, +m))

> 1

= e log W (3] (g +m))

> dimy,.(p, 7).

as required. O

When the local dimension exists, the content of the following lemma states
that we can extend the nice properties along the approximation sequence to net
intervals in similar levels. A similar statement holds when the loop class local
dimension exists.

Lemma 6.4. Suppose x is an interior point with symbolic representation . Let x have
approximation sequence (n;)52, and let (k;)32, C N satisfy lim; ., s—; =0.
(i) Suppose dimy,.(u, ) exists. Then

lim 2807 = k)
oo log p(yn;)
(ii) Suppose dimy,.(p,y) exists. Then with m from Lemma 6.2,

= 1.

o Josp(Bl@ Win; +m))
i=oo log u(B(z, W(yln; + m + k;)))

Proof. We first see (i). For each i let A; have symbolic representation ~|i, set
t; = diam(A,,), and let a = dimjec(¢, ). By Lemma 6.2, there exists some R > 0

and m € N such that

(61) B(I,Rt]) g Anj g Anjfkj Q B(.Z',Cjtj)
where ¢; = Wn_li’;j !, But then since log cit; ~nj —k;
k; 11 min . k;
lim<]+)OgW = lim I =0
Jj—oo log Cjtj J—moo Ny — ]Cj
so that
lim log u(B(z, ¢jt;)) L log u(B(z, ¢jt;))
j—00 lOg tj j—oo (k] + 1) lOg Wonin + lOg Cjtj
o logp(Blrety)
j—ro0 log ¢;t;

log p(B(z,Rt;)) _Thus

Arguing similarly, we also have o = lim;_, gt

log (B(z, ¢;t,))
1m
5% Tog ju(B(z, Rt,))

and the result follows from (6.1).
The proof of (ii) follows similarly after observing that

An; 2 B(x, R-W(y|n;)) 2 B(a, W(y|n; +m))
2 B(ZL‘, W(’7|TL] +m+ k])) ) Anj+m+kj' O

=1
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Finally, the situation is nicest when = € Kp, is a regular point. Note that this
strengthens the usual observations in Proposition 6.3.

Corollary 6.5. Suppose x € Ky, is a regular point with unique symbolic representation
~ eventually in the loop class L. If either dim,.(p, x) exists or dimye.(p, ) exists, then
they both exist and are equal.

Proof. We see this when dimy,.(p,7) = «a exists; the proof when dimy.(y, )
exists is analogous. Set k; = n;;1 — n;. But then for all i sufficiently large,
n; +m < i < n; +m+ k; for some j. Then since z is a regular point, Lemma 6.4
applies with (k;)52, and

log j1( B(x, W (7]))) logu(B(:c,W(v!(nj +m)))>

lim sup - < lim sup
N log W (v|7) j—ro0 log W(7|(n; +m))
1 .
< lim sup 222201) _

jooo 1og W(7y|n;)

The lower bound follows similarly, so that dimje.(u, ) = o O

6.2. The upper bound for the multifractal spectrum. Set
E ;L) = {z € K} : dimee(p, 7) = a} = K N E,(a).

Given a path ( € Q" ending at a vertex in £, one can think of E,(co; £) N 7(¢)
as an analogue of the set £, () from §5.1. In Theorem 5.8 the upper bound
fre(a) < 7/ (a) always holds, with no assumptions on £. Here, we show that 7/ («)
is also an upper bound for the Hausdorff dimension of the level sets £, (c; £).

Compare part (i) in Theorem 6.6 with [ , Proposition 4.4]. Note that our
definition of auin(£) and amax(L) (as defined in (5.2)) is formally different from
that paper. Regardless, one can show that they coincide when L is an irreducible
loop class.

Theorem 6.6. Let (S;,p;)icz be a WIFS satisfying the finite neighbour condition with
associated self-similar measure . Let L be a loop class. Then
(1) dimyee(pt, ) € [amin(L), amax(L)] for any x € K2 for which the local dimension
exists, and
(i) dimy E,(a; L) < 75(a) for any o € R.

We first recall some notation from §5.2. Fix some A, € F such that V(4,) € V(£).
Let Ay have symbolic representation ¢, and set

so that
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The projection 7 taking paths in 2* to net intervals in P restricts to the map

T Qe > {AEP A CALV(A) € V(L))

We recall that p = p o 7. As defined in Theorem 5.12, we also set

F(ost €)== {n e Fre(t) : 17 < p(n) <t}

We first prove the following standard counting result on the size of the sets
F(a;t,€). This is essentially the same as, for example, [ , Lemma 4.1].

Lemma 6.7. Let o > 0 be arbitrary and q € 07} (). Then there exists some r > 0 such
that forall 0 <t <,

#F(a;t,e) <t el 0FlaDe

Proof. We prove this for ¢ < 0, but the case ¢ > 0 follows identically. To do this,
we bound A, () in two ways for ¢ sufficiently small. On one hand,

Aty = D pln)? =t IHF(ast, e).

neF (ast,e)

On the other hand, for ¢ sufficiently small (depending on e and A), A4,(t) < t7¢(@—¢,
Combining these observations, we have

#F(a;t,e) < tTel@gmalame) — ymmz(e)=(1-q)e
since ¢ € 07} («) so that 7/(a) = ag — 72(q). 0

We now begin the main proof.

Proof (of Theorem 6.6). To see (i), suppose = € K} is arbitrary with unique
symbolic representation v = (e,,)?> ;. Let ( € Q* be a prefix of 7 ending in L.

By Proposition 6.3, dimy,.(p, x) = dim, (p,7), so there exists an increasing
sequence (n;)52, such that

' . log p(v|n;)
d = W )
dimye (p, ) = Jim 1 W (7n;)

With t; = W(y|n;), since y|n; € F;;, we have for j sufficiently large that y|n; € €}, .
so that

log znefﬁ,g(tj)ﬂ(ﬁ)q < log p(7y|n;)
log t; - logt;

Taking the limit infimum as j goes to infinity yields

TE(Q) = TE,C(Q) S qdimloc(:ua iL‘)

where ¢ € R is arbitrary. It follows that dimye. (¢, ) € [min (L), Cmax(L)].
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We now see (ii). Since

Kint = U AN Kt
{A€PV(A)EV (L)}

it suffices to show that dimy Ey < 7/(«) where
Ey = E,(a; L) N Ay

and Ay = 7((p) is a fixed net interval with neighbour set in £. We fix notation as
above; in particular, we recall that ¢, is the symbolic representation of A,.
Again we assume ¢ < 0; the case ¢ > 0 follows similarly. Fix e > 0 and set

Gn=A{m(n) :ne€ F(a;27",¢)}

where 7(7) is the net interval with symbolic representation 7. By Lemma 6.7, there
exists N = N(e) such that foralln > N,

4G, = #F(0; 27", ¢) < 2009,

LetG = UZO:N(E) Gn.

We first see that G is a Vitali cover for Ej. Let x € Ej be arbitrary. Since z = ()
is an interior point, it has an approximation sequence (n;)32,. Let m be such that
any path 7 in G of length at least m has W () < 1/3. Such a constant exists since
there are only finitely many possible edge weights 1V (e) € (0, 1). The choice of m
ensures that there exists some m; € N such that W (y|n;) <27 < W (y|n; —m).
Since dim,.(p, ) exists and R - W (y|n;) ~ 27™ where R > 0 is a fixed constant,

(6.2) i 108 UB(z, B-W(7[ny)))

=1.
5% Tog u(Blw, 2 ™))

Now, by Lemma 6.2 and Lemma 6.4 applied to the constant sequence k; = m,
we have for j sufficiently large and 0 < ¢ < m arbitrary

(B, R-W(yln;))) < plylng) < p(vlng — i) < p(vlng) .
Moreover, we always have
B(z,27™) 2 Bz, W(v|n;)) 2 7(7vIn;)
so that p(vy|n;) < u(B(z,27™)). Thus applying (6.2), for all j sufficiently small,

(B, 27")) < p(ylng — i) < p(ylng)' ¢ < p(B(z,27m)) e

Finally, since dimy,.(i, ) = «, for all j sufficiently small and 0 < i < m with
V|(ny — i) € Fre(27™),

(2779)%7 < p(ylny — i) < (27M)*7
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Thus 7 (v|(n; — 1)) € G. Since this is true for all j sufficiently large, we may take
diam(y|(n; — 7)) arbitrarily small, so G is indeed a Vitali cover for Ej.

Now suppose {E;}:°, is any disjoint subcollection of G: then for s = 7/(«a) +
2(1 —q)e,

Zdiam(Ei)S = Z diam(A)* < Z 274G,
=1 n=N(c) A€Gn n=N(e)
< Z (2—72(a)—2(1—q)6)272(06)+(1—q)6)”
n=N{e)
= Z (271D < o,
n=Ne)

Thus by the Vitali covering theorem for Hausdorff measure, we must have

H*(Eo) <) _ diam(E;)* < oo

=1

so that dimy Ey < 77 () + 2(1 — g)e. Since € > 0 was arbitrary, the result follows.[]

6.3. Irreducibility and the lower bound for the multifractal spectrum. We recall
that the notion of irreducibility was introduced in §4.2. Moreover, recall that a point
r € K is said to be an interior point of K if it only has symbolic representations
that are eventually in £, and the set of such points is denoted by K}*.

We now introduce the notion of an interior path, and use this to relate the
notions of {-regularity in 2°° (introduced in Definition 5.11) with regular points in
K (as defined in Definition 6.1).

Definition 6.8. We say ¢ is an interior path if whenever (A;)I", is a sequence of net
intervals where A, is a child of A; corresponding to &, there is a neighbourhood
of A,, in K which is contained entirely in A,.

Recall that (2 is the set of rooted infinite paths in G and K, is the set of regular
points.

Lemma 6.9. Let £ be an interior path in a loop class L, and let v € QF be {-reqular.
Then for any path 1 such that ny € Q, w(ny) € K& N Kg.

Proof. This is a direct application of the definitions, noting that if v = (e,,)72, n
has length m,, £ has length ms, and £ appears at some position n, then some j with
n+my < j <n+my+ myis a point in the approximation sequence of 7(ny). O

Recall that

E ;L) = {z € K : dimy,.(p, x) = a}.

We will also need the following result, which follows by a similar argument
to [ , Proposition 3.15] or (in a somewhat more specialized case) [ ,
Proposition 2.7].
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Lemma 6.10. Suppose L is a simple loop class and x € K. If x is an interior point with
71 (x) = {v}, then

dimloc (U; $) = dirnloc (P, 7)
Otherwise x € K is a boundary point with 7 (x) = {v1, 72}, and

dimyee (p, ) = min{dimyec(p, 1), dimyee(p, 72) }-
We now show here that the regular points in a non-simple K are abundant.

Theorem 6.11. Let L be an irreducible loop class which is not simple, or simple and
contains an interior point. Then E,(o; L) # 0 if and only if f-(«) > 0 if and only if
a € [omin (L), max(L)]. Moreover,

dimy E, (o L) N Kg > fr(a)
forall a.

Proof. 1f L is simple, since £ contains interior points, the result follows directly
from Lemma 6.10.

Otherwise, £ is not simple, so there exists some vertex v € V(£) and an interior
path & € Q*(L,v). Let (; € Q* be any path ending at a vertex in £. By Theorem 5.12,
get ' C E; (o) such that dimy I' > dimy Er ¢, (o) and each v € I' is ¢-regular
with dimy..(p,7) = a.

By Lemma 6.9 and Corollary 6.5, 7(I') C E(L, o) N K. In particular, this proves
E,(L;a) N Kg is non-empty whenever f.(a) > 0, and

dimpy E,(L; ) N Kz > dimy 7(T).

We also know by Theorem 5.8 that a € [in(£), max(L)] if and only if fz(a) >0
The remaining implication follows from Theorem 6.6.

It remains to prove that dimy 7(I") = dimy(I"). We recall from Lemma 5.1 that 7
is Lipschitz, so dimy 7(I') < dimp I'. Conversely, let A € P be the net interval with
symbolic representation ¢; and let {U; }°; be some e-cover of 7(I') C A. Without
loss of generality, we may assume U; C A for each i € N. Let ¢; = diam U; < € and
let b, denote the maximal number of net intervals of generation ¢; which intersect
U;. Note that b; < 1/[a] + 1 where the diameter of any generation ¢ net interval is
at least at. These net intervals have symbolic representations {(i7;; : 1 < j < b;},
and the corresponding cylinders C = {[;;] : i € N,1 < j < b;} cover I' and have
diameter W (7;;) =~ t;. Thus there exists some A > 0 such that C forms an Ae-cover
of I.

It follows that for a suitable constant ¢,

b;

Z Z (diam([n;;]))” < cA® Z(diam(Ui))S

i=1 j=1 i

and therefore for each € > 0,

HZy (L) < cAHZ (m(T)).
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Letting e — 0, we deduce that H* (7 (")) > (cA*)"'H*(T'). This implies dimy 7(I") >
dimpy/(T'), so that dimy 7(I") = dimy I O

If £ is an irreducible non-simple loop class, then necessarily £ contains an interior
path. The only additional case occurs when L is a simple loop class without an
interior path. In this case, it may hold that every = € K, has two symbolic repre-
sentations, and the local dimension is always given by the symbolic representation
of the adjacent path not eventually in £. This motivates the following definition.

Definition 6.12. We say that a loop class L is non-degenerate if L is not simple, or
if £ is simple and there exists some = € K such that

dimyee (@, ) = dimyee(p, )
for some v € Q. We say that L is degenerate otherwise.

Corollary 6.13. Suppose every loop class in G is irreducible, with non-degenerate loop
classes L4, . .., L,,. Then the multifractal spectrum of y is given by

fule) = max{fe, (), ..., fr,(a)}

for each o € R.

Proof. Combining the general upper bound from Theorem 6.6 and the lower
bound Theorem 6.11 using irreducibility, it follows for each 1 < ¢ < m that

dimy E,(o; £;) = fr, ().

Of course,

UEM(&;Q) D B, (a) N K™,

=1

Moreover, if the local dimension exists at z ¢ K™, by Lemma 6.10, dimy,(p, ) =
dimj,c(p,y) for some infinite path v € Q. Then this £ is non-degenerate, and
K\ K™ is countable and hence has Hausdorff dimension 0. Thus

fu(e) = dimy E,(a) = dimy E,(a) N K™

as required. O

6.4. Decomposability and bounds for the L¢-spectrum. Recall that the notion of
decomposability was introduced in §4.3.

Similarly to how we bounded the multifractal formalism f, in terms of the
functions f. for loop classes £, in this section, we establish bounds for the L9-
spectrum 7, in terms of the functions 7. We first note the following general upper
bound.
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Lemma 6.14. Let p be a self-similar measure satisfying the ®-FNC, with loop classes
Ly,..., L. Then

) log su u(B(x;,t))? .
rala) < imsup BN L MBS it () e, (a))

t—0 logt
where the supremum is taken over all centred packings { B(z;,t)}; of K = supp u.

Proof. The first inequality follows by definition.
To see the second inequality, let £ be an arbitrary loop class. Let ( € 2" be a
path ending at a vertex in £. Then by definition

s = > p).

77€.7'—(t) nEfgyg(t)

Now the same proof as Proposition 5.2 shows that

lim sup logsup >, u(B(zi, 1)) lim sup log e P(1)"
=0 logt £—0 log t

< 72c(q) = 7e(q)

by existence of the limit defining 7, given in Lemma 5.3. But £ was arbitrary, so
the result follows. O

We now have the following result establishing our lower bound as well. Note the
similarity of this result and proof to [ , Theorem 5.2].

Theorem 6.15. Let p be a self-similar satisfying the ®-FNC with decomposable transition
graph G. Let G have loop classes L, . .., L,,. Then

7u(q) = min{7z, (q), ., 72, (0)}-
for any q € R. Moreover, the limit defining 7,(q) exists for any q € R.

Proof. For each loop class £;, fix a path (; € Q* ending at a vertex v; € V(L,).
Now for each vertex w € V(L;), let v, , be a path in £; from v; to w. Let 5o > 0 be
such that

sé/m < miin min W ((viw)-

weL;

Similarly, since there are only finitely many initial and transition paths, there is
s1 > 0 such that if n € F(t) has decomposition (A4, ..., A,), then

Next, define sets of path weights

A= {W(U) ‘ne Fﬁi,@}
A) = {(t1,. . tm) €Ay X o X Ay 1 818 >ty -+ -ty > Sot}
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Since there are only finitely many edge weights W (e) for e € E(G), it follows that
there is some k € N such that #A(t) < (—logt)* for all ¢ sufficiently small.
We now construct a function

(6.3) V:F(t) = | Fralt) x o X Frpg (tm)

as follows. Suppose the path n € F(t) has decomposition (A, ..., A;,). Then if the
path \; begins at vertex w; € V(L;), we set

‘Ij<77> = (le}/l,wl)\17 SR Cmq/m,wm)\m)-

Note that ¥ is well-defined by choice of s, and the definition of A(?).

Since there are only finitely many transition paths, there is a uniform bound on
the number of paths with the same decomposition. Moreover, since there are only
finitely many paths +; ,,,, for a fixed path 7, the number of distinct decompositions
of paths ' with ¥(n) = ¥(7’) is also uniformly bounded. Thus, even though ¥
need not be injective, there is some constant N € N (independent of t) such that
each fibre of ¥ has cardinality at most V.

Fix

0(q) = min{rz,(q), ..., 7z, (q)}

By Lemma 5.3, for any € > 0 and all ¢ sufficiently small,

Z T (m:)||* < t7e:( @€ < 9@ e,
nie]:l:i’gi (t)

Moreover, by the decomposability assumption and Lemma 3.13, it follows that if
lIj(n) = (Tha cee 777m)1 then

1T g 1T )1 T () 1

Thus for all ¢ sufficiently small,

St Y. S T Tl T () |

T]E]'—(t) (t1 ..... tm)EA(t) 7716.7:[;1’@‘1(251) nme}—ﬁm,(m(tm)
= > > Tl - > ITma)I
(tl ----- t’VV‘L)eA(t) 771€]:£1,41 (tl) 77m€-7'—1:m,gm (tTVL)

Se D HOTee
(E15ee,tm ) EA(R)

<y #A)P D

Since #A(t) grows polynomially in logt, it follows by Proposition 5.2 that

lo a
7,(¢) > lim inf 8 2 e P > 0(q) — €.

t—0 logt
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But ¢ > 0 was arbitrary, and combining this with Lemma 6.14 yields the desired

result. O
Remark 6.16. In fact, since for any path n with decomposition (Ay,...,\,), we
have

1T S N Q)=+ 1T (o)

with no assumptions on the transition graph G, the same proof as above shows
that

7e(q) = 7u(q) = min{rz, (9), .-, 72,.(9)}
by Proposition 5.4 for ¢ > 0 without the decomposability assumption.

Remark 6.17. Unlike the results for the multifractal formalism in Corollary 6.13,
we note that Lemma 6.14 and Theorem 6.15 write the L?-spectrum in terms of all
loop classes, and not just the non-degenerate loop classes.

7. APPLICATIONS AND EXAMPLES

Throughout this section, naturally, (S;, p;)icz is @ WIFS satisfying the finite neigh-
bour condition with respect to the iteration rule ®, and has transition graph G and
associated self-similar measure .

7.1. Consequences of the main results. Our first application, which follows
essentially from the bounds in the previous section along with standard properties
of concave functions, describes precisely when the multifractal formalism holds.

Corollary 7.1. Suppose G is irreducible and decomposable, and suppose the maximal loop
classes L., . .., L, are non-degenerate. Then y satisfies the multifractal formalism at o if
and only if a € 07¢,(q) for some 1 < i < mand g € R with min{7z,(q),...,72,(9)} =
72,(q). In particular, if the derivative o = 7, (q) exists at some q € R, then pu satisfies the
multifractal formalism at c.

Proof. Since G is decomposable, 7, = min{7z,(q), ..., 7z, } by Theorem 6.15.
First suppose f,(a) = 7;(a), so there is some £; such that

Tu(@) = fri(a) = 17,()

by Corollary 6.13 and Theorem 5.8. Since 7;(a) = 77, (), there are ¢, g2 € R such
that o € 07, (q1) N 07,(q2): therefore, 7., (q1) — 7.(¢2) = a(q1 — g2). Without loss of
generality, suppose ¢1 < g2. Since 7,,(q1) < 7¢,(q1) and 7¢,(q1) < 7,(¢2) — (2 — 1)
by concavity, this can only happen when 7;,(¢1) =
required.

Conversely, suppose a € 07¢,(q) where 7¢,(q) = 7,(q). Since 7, < 7,, it follows
that a € J7,(q) so that 7;(a) = 77.(a). But 7£,(q) < min{rg,(q),...,7,.(¢)} by

(1) and o € O07z,(qv), as
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assumption so

*

Tu(@) = 7z, (@) = max{rz (@), ..., 7z, (@)} = fu(e)

by Corollary 6.13.
If 7/(q) exists, it follows immediately that a € 97,(¢) for any i such that

TLi(q) = min{TLI (Q)7 e Tl (Q>} U

Our next result was obtained in [ ] under the weak separation condition, but
we obtain it here (in a slightly more specialized case) as a direct corollary of the
prior results.

Corollary 7.2. Suppose G has exactly one loop class L. Then y satisfies the multifractal
formalism.

Proof. Since L is the only loop class, it must be essential, so it is irreducible by
Lemma 4.6. Since there is only one loop class and therefore no transition paths, the
decomposability condition holds vacuously, and by Theorem 6.15, 7, = 7. Thus
the result follows from the multifractal formalism for irreducible graph-directed
systems proven in Theorem 5.8. O

We now prove the following result, which completely characterizes the validity of
the multifractal formalism in terms of a qualitative property of the multifractal
spectrum.

Corollary 7.3. Suppose the transition graph G is irreducible and decomposable, and every
loop class is non-degenerate. Then y satisfies the multifractal formalism if and only if f, is
a concave function.

Proof. If p satisfies the multifractal formalism, then f, = 7 where 7 is a
concave function.

Conversely, suppose f, is a concave function. We have by Theorem 6.15 and
Corollary 6.13 that

(7.1) fu=max{fz,,..., fe,,} and 7, = min{rz,,..., 72, }.

where G has loop classes L4, ..., L,,.

Now let oy € R be arbitrary. Let g be the unique value such that o € 97,(¢q) =
la1, 0. If ay = ay, 7, is differentiable at ¢ and we are done by Corollary 7.1.
Otherwise, by (7.1), there exist two loop classes, say £, and £, such that o; €
07r,(q), g € 07, (q) and 7¢,(q) = 7£,(q) = 7u(q). Observe that 7;(a) = ag — 7,(q)
for any a € [a1, an]. Moreover, since concave conjugation is order reversing, by
(7.1), fular) = fei(on) = 7i(en) and fu(az) = fr,(a2) = 7)(az). But fu.(ag) <
7:(ap) and f, is concave by assumption, forcing 7;; () = f.(ao) as required. [

Remark 7.4. For IFS of the form (Az + d;);c7 satisfying the finite type condition,
the following version of the reverse implication was first observed in [ ,
Remark 5.3]: if 7, = 7, for an essential loop class £, then p satisfies the multifractal
formalism. This result follows for any IFS satisfying the ®-FNC by combining
Proposition 5.4, the fact that the essential loop class is always irreducible, and the
general upper bound f, <7},
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A sufficient condition for the measure p to fail the multifractal formalism is for the
set of attainable local dimensions of ;. to not be a closed interval. In general, this
condition is not necessary. However, in certain situations, we can determine that it
is necessary and sufficient.

Corollary 7.5. Suppose the transition graph G is decomposable. Suppose in addition
that every non-essential loop class is simple and non-degenerate. Then (i satisfies the
multifractal formalism if and only if the set of local dimensions

{dimjoc(p, ) : z € K}
is a closed interval.

Proof. The forward direction is immediate.

Conversely, denote the loop classes by {L4, ..., L,,}. If £ is any simple loop
class, then f.(a) = 0 for precisely one value of a, and is —oo otherwise. Since the
essential loop class and any simple loop class is irreducible, by Remark 5.5, we
have

fela) = max{fe, (), fe, (@)} = ful@).
Thus the result follows by Corollary 7.3. O
7.2. A family of examples of Testud. Let ¢ > 2 be a positive integer. Let P, N C

{0,1,...,¢/ —1} where {0,/ —1} C PUN. LetZ = P x {1} UN x {—1} and for
(1,£1) € Z, define

r 1 r 141
Sap(x) = 777 St (z) = AR
In this subsection, we study the multifractal theory of the IFS {S;};cz. This
family of IFS was studied in [ ] and [ ] under the assumption that
P ={0,1,...,¢—1}. We do not require this assumption in our analysis.

Fix the iteration rule ® from Example 3.7. Write V' = {v;,v_1,v4,} where
v, = {x — 2}, vy = {z — —zr+ 1} and vy = v; Uv_;. Since the images
Si,+1)((0,1)) are either disjoint or coincide exactly,

P, =1{5,([0,1]) : 0 € Z"}.

In particular, if A € P is any net interval, then V(A) € V. Thus (5;);ez satisfies the
®-FNC. Note that v; = vye0 € V(G).

If PN N = (), then the IFS satisfies the open set condition with respect to the
open interval (0, 1). Otherwise, there exists some index i such that (4, 1) and (¢, —1)
are both in Z, so that vy, is a neighbour set in V. For the remainder of this section,
we will assume that this is the case. The open set condition may hold even when
PN N # () with respect to an open set that is not an interval (take, for example,
¢=4,P=1{0,1,3},and N = {1}), but for simplicity we omit this discussion.
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7.2.1. Properties of the transition graph. We begin with a description of the transition
graph G.

Proposition 7.6. Suppose P N N # (). There is a unique essential loop class Gess, and
V41 € V(Gess). Moreover, exactly one of the following holds:
(i) We have P = N. Then G is the only loop class and V (Gess) = {v11}.
(ii) There is some i such thati € P\N and (—1—i ¢ Pori € N\Pandi,{—1—i ¢ N.
Then G is the only loop class and V (Gess) = V(G) = {v1,v_1,v41 }.
(iii) Otherwise, there is exactly one non-essential loop class L. In this case, if P\ N # (),
then vy € V(L), and if N\ P # 0, then v_; € V(L).

Proof. Ifi € PNN, then {(,1), (4, —1)} C Zso that S;1)([0,1]) = Si,—1)([0,1]) =
A is a net interval with neighbour set v,. This neighbour set is essential since if
A = 5,([0,1]) is any net interval, then S,(; 1)([0, 1]) is a net interval with neighbour
set v41.

It is clear that exactly one of the conditions must hold. We verify corresponding
properties of the transition graph G.

(i) If P = N, then for any net interval in P;, we see that V(A) = v.;. Thus every
outgoing edge from v, ends at the vertex v;.

(ii) Suppose there is some: € P\ N with¢ —1—1i ¢ N. Let A = S,([0,1]) € P,
have V(A) = vy;. Then S,(;1)([0,1]) is a net interval with V(A) = v; and
Se(e—1-i,-1)([0, 1]) is a net interval with V(A) = v_;.

The other case follows similarly.

(iii) Finally, suppose (i) and (ii) do not hold. Let S, ([0, 1]) = A be a net interval
with V(A) = vy, and suppose 7, > 0, and 7 has r, < 0 and S;([0,1]) = A as
well. Suppose i € P so that A" = S,(; 1)([0, 1]) is a child of A. Then negating
the condition (ii), we either have i € N (and A’ has neighbours generated
by o(i,1) and o (i, —1)) or £ — 1 —i € P (and A’ has neighbours generated by
o(i,1) and 7(¢, 1)), so A’ has neighbour set v, ;. The other case i € N, or the
cases where A’ = S.; 4+1)([0, 1]), follow similarly. Thus V(Gess) = {v41}.
Since P # N, if P\ N # (), there is an edge from v,,ot = v1 to vy and if
N\ P # 0, there are edges from v; to v_; and v_; to v;. Thus the claim
follows. OJ

We can now observe the following result.

Lemma 7.7. With any choice of probabilities, the transition graph G is irreducible and
decomposable.

Proof. The essential loop class G is always irreducible by Lemma 4.6. If
there is a loop class £, we observe that either V(L) consists of a single vertex or
V(L) = {v1,v_1} and there are edges joining v; and v_; and v_; and v;.

Since the neighbour sets v; and v_; have cardinality one, irreducibility follows
by Lemma 4.5. Decomposability follows directly from Lemma 4.10. O

7.2.2. Multifractal properties of associated measures. We can compute formulas for
the loop class L-spectra.
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Proposition 7.8. (i) Suppose L is a non-essential loop class. Let 7 = (P\ N)U (N \
P), and for j € J, write p; = p1yif j € P\ N, and p; = pi;—1yifj € N\ P.
Then

log Zjejp?
TL(Q) = ng

(ii) Let T(z) =1 —x. Thenwithv = p+ po T,

TG (0) = Tu(q)-

Proof. (i) Observe that there is a bijection between paths in Q} and words
in J". Moreover, if n € Q} has corresponding sequence (ji,...,7,) € J",
a direct computation gives that p(n) = ||T'(n)|| = pj, ---p;,- Thus since
Uroot = V1 € V (L),

jn)ejn p]l o ‘pjn

77777

z(q) = Teo(q) = nh_{{.lo —nlogl

) 10g <Zjej pj)
= lim
n—00 —nlogt

_ lOg Zjej qu
—log ¢

as claimed.
(ii) Let A € P, have V(A) = v4,. By Proposition 5.4, 75, (q) = 7,4, (¢). But for
any Borel set £ C A, we have by (3.8) since V(A) = {id, T'}

w(E) = p(E)piay + po T(E)pe-1) = v(E).
Thus 7g,..(q) = 7.(q) for any g € R. O

We now observe the following conclusion.

Theorem 7.9. If there is no non-essential loop class, then p satisfies the multifractal
formalism. Otherwise, there is a single non-essential loop class L. Then

7.(q) = min{7z(q), 76...(¢) }
Jula) = max{7;(a), 75 _(a)}.

Proof. This follows directly from Lemma 7.7 by the general results Corol-
lary 6.13 and Theorem 6.15. O

7.3. Bernoulli convolutions with Pisot contractions.

7.3.1. Simple Pisot contractions. A simple Pisot number is the unique positive real
root of a polynomial
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for some k£ > 2. We denote this number by 7. Naturally, r;, is a Pisot number, which
is a real algebraic number strictly greater than 1 with Galois conjugates having
modulus strictly less than 1. Note that r, = (/5 + 1)/2 is the Golden ratio, and
l<rg<ryg<ry < - <2.

We are interested in the (possibly biased) Bernoulli convolution associated
with the parameter A = 1/7;, which we view as a self-similar measure associated
with the IFS

Si(z) = M\ So(x) = A+ (1 = A)

and probabilities p;, p, > 0 with p; + p, = 1. It is known (since at least [ D
that the IFS (S5;);—1 » satisfies the finite type condition, and thus satisfies the finite
neighbour condition with respect to the iteration rule from Example 3.7.

In | ], Feng proved, with probabilities p; = p, = 1/2, that the associated
self-similar measure satisfies the multifractal formalism. Here, we show how this
result can be obtained as a special case of our general results.

Fix any probabilities p;, p, > 0 with p; + p» = 1. We first obtain basic results
on the structure of the transition graph G and some information on sets of local
dimensions.

Proposition 7.10. The transition graph G has a unique essential loop class Gess and two
non-essential simple loop classes L, and L. Both loop classes £, and L4 have a single
vertex which is a neighbour set which has cardinality one.

Each QF consists of a single path ~;, where w(v1) = 0 and 7(7y2) = 1, and

) . lo
d1m100<:ua O) = dlmlOC(p> 'Yl) = logg];l
72) . . log p2
dlmloc(ﬂa 1) = dlmloc(p> 72) = log)\ .
Moreover, there exists a v € QF _ such that
. log p1p2
d oc\ ) = .

Proof. We will assume that k£ > 3; the case k& = 2 is similar, but easier (in fact,
full details of the computation are given in [ , Section 5.1]).

By a direct computation, the part of the graph G spanned by Q? is given in
Figure 4, along with the net intervals in P, drawn in Figure 5. The net intervals
labelled A, for i = 1, 2, 3 have neighbour sets V(A;) = v;, which are the labelled
vertices in the partial transition graph.

We can now see that the leftmost child of A; has neighbour set v;, and the
corresponding edge e, has T'(e15) = (ap1) and W (er2) = A for some constant
a > 0. Similarly, there is an edge €2 from vy to v; with T'(es;) = (a 'p2) and
W (ea1) = A. From here, a straightforward induction argument (using the fact that
M4 AL oo+ X — 1 = 0) yields that, in fact, vy, v9, v3 are vertices in a unique
essential loop class G, and the cycles labelled as £; and £, indeed make up
simple loop classes.
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FIGURE 4. Partial transition graph for the simple Pisot Bernoulli convo-

Iution
_ O A Ay a— Ay — _
o 7 s o > oo .
\ \ \ \
2 - 7o 7,

Yo

FIGURE 5. Net intervals in P, for the simple Pisot Bernoulli convolution

Since the edge e; (resp. e3) corresponds to the left-most (resp. right-most) child
of the base net interval [0, 1] and v, is not in any loop class, it follows for i = 1,2
that Q., consists of a single path v, = (¢}, e;,€;,...) with 7(y;) = 0 and 7(72) = 1.
Moreover, since T'(¢;) = (p;) and W (e;) = A, | T(yi|n)|| = p} and thus (7.2) holds.
Now since § = (e12, e21) is a cycle and an interior path in G, let ¥ denote any path
of the form ;00 ..., so v € QF and by Lemma 3.13

' ‘ log p1p
dlmloc(/ua W(V)) = dlmloc(p’ 7) - 2 log? )\2 .

as claimed. ]

Theorem 7.11. Let u the Bernoulli convolution associated with the Pisot number ry.
Then y satisfies the multifractal formalism if and only if p; = py = 1/2.

Proof. 1t follows from a general observation in [ , Theorem 3.1] that if
p1 # 1/2, then the set of attainable local dimensions of y is not a closed interval
(this holds for any overlapping biased Bernoulli convolution, with no separation
assumptions). Thus i does not satisfy the multifractal formalism.

Conversely, when p; = p, = 1/2, it follows from Proposition 7.10 that the set of
local dimensions is a closed interval. The IFS is decomposable by Lemma 4.10, so
by Corollary 7.5, i satisfies the multifractal formalism. O
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7.3.2. Other Pisot contractions. More generally, we can take r € (1, 2) to be any Pisot
number. Let ;. be the Bernoulli convolution with parameter A = 1/ associated
with probabilities p; and p,. We have the following result.

Theorem 7.12. Suppose r is the Pisot number which is the unique positive real root of
any of the polynomials below:

o P — 227+ 1 —1.

o ot — 1% — 227 + 1.

e ot -2+ -1
Let G be the transition graph associated with the Bernoulli convolution with parameter
A = 1/r. Then G has one essential loop class G.ss and two simple loop classes L, and Lo,
each of which has a single vertex which is a neighbour set of size one. Moreover, the set of
local dimensions is a closed interval with right endpoint log 2/ log r when p; = py = 1/2.

In particular, y satisfies the multifractal formalism if and only if py = po = 1/2.

Proof. This follows by a direct computation, preferably with the aid of a com-
puter: the net intervals in P, have the same relative placement and the corre-
sponding transition matrices are the same as given in Proposition 7.10. Thus the
conclusion follows by the same argument as Theorem 7.11 O

7.4. A family of non-equicontractive examples. Fix parameters A\;, A\, > 0 and
consider the IFS given by

(73) 51<I> = )\11’ SQ(I) = )\2.75 + )\1(1 - )\2) Sg(x) = )\21’ + (1 - )\2)

where A\; + 2\, — A\; A2 < 1. Note that the case \; = X\» = 1/3 is discussed in
Example 3.2. This IFS was first introduced in [ , Proposition 4.3], and the
multifractal analysis of this measure was studied extensively in [ ; I

The IFS in (7.3) is a special case of the following general construction. Fix
parameters \j, A2 > 0and some k € N, and for j € {0,1,...,k}let 3; = Ai-(Aa/ M) .
Then consider the IFS given by the k 4 2 maps

So(.l’) = )\133'

(7.4) Si(z) = Bix + Z/Bj_]_(l — f;) foreachi e {1,... k}

Jj=1

Sk+1(x) = \ox + (1 — )\2)

under the constraint Sy (1) + A2 < 1. This IFS coincides with (7.3) when k& = 1, and
coincides with [ , Example 8.5] when k = 2.

The author proved in [ , Theorem 5.7] that any self-similar measure asso-
ciated with the IFS (7.3) satisfies the multifractal formalism. However, the proof in
that paper is complicated by the use of the iteration rule given in Example 3.8. If
we instead take the iteration rule from Example 3.7 with corresponding transition
graph G, the situation is much more straightforward, even with our general setup.

Proposition 7.13. The transition graph G is strongly connected.
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Proof. The definition of the IFS (S;), ensures for eachi = 1, ..., k that
(75) Sz',l o Sk+1 = S(] o S@ and 5171(0) < Sz(O) < 5171(1> < Sz(1>7
and by assumption Sj(1) < Sj41(0). Thus the net intervals in P; are the intervals

Ao = [0, 51(0)] Ag = [Sk-1(1), Sk(1)] Agy1 = Se1([0,1])

and

A1 = [Si(1) NSz (0)] fori=0,1,... . k—1
Ai = [81(1)7514_1(0)] fori = 1, .. .,]{3 —1

which are ordered from left to write as (Ao, Ao 1, A1, ..o, Ap—1k, Ag, Agt1). Note
that v,00t = V(Ag41), and set v; = V(4A;) fori =0, ...,k and v; ;41 = V(A ,;11) for
i=0,... k—1.5tV ={vne} U{v; :i=0,... .k} U{vigg1:i=0,... . k—1}.

It follows from (7.5) that the net intervals in P, contained in S;([0, 1]) for all
0 <i < k+ 1 arejust the intervals S;(A;) and S;(A; j+1) with V(S;(4;)) = v; and
V(Si(Ajj+1)) = vj 41 for all valid j. Tracking inclusion of these net intervals in the
net intervals in P; yields the graph G’ with (unlabelled) edges given by

® (Uroot,v) forallv € V.

® (vg,v) forallv € V' \ {v001 }-

* (vg,v)forallv e V' \ {vy,vo1}.

* (v;,v) forallv € V' \ {vo,v01, 000t} and i € {1,...,k —1}.

b (Ui—l,i7 U) forallv € {?)07 U()J} and i € {]_, ceey k?}
In particular, we observe that G’ is strongly connected. Note that, for certain choices
of k, A1, Ay, the list V' of neighbour sets given above may include repetitions. In any
case, the transition graph G is given by identifying vertices in G’ corresponding to
the same neighbour set, so §G is strongly connected. 0

Theorem 7.14. Let y be any self-similar measure associated with the IFS (S;)¥*) from
(7.4). Then p satisfies the multifractal formalism.

Proof. This is immediate from Proposition 7.13 and Corollary 7.2. 0
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