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ABSTRACT. We study self-similar measures in R satisfying the weak
separation condition along with weak technical assumptions which are sat-
isfied in all known examples. For such a measure µ, we show that there is
a finite set of concave functions {τ1, . . . , τm} such that the Lq-spectrum of
µ is given by min{τ1, . . . , τm} and the multifractal spectrum of µ is given
by max{τ∗1 , . . . , τ∗m}, where τ∗i denotes the concave conjugate of τi. In par-
ticular, the measure µ satisfies the multifractal formalism if and only if its
multifractal spectrum is a concave function. This implies that µ satisfies the
multifractal formalism at values corresponding to points of differentiability
of the Lq-spectrum. We also verify existence of the limit for the Lq-spectra of
such measures for every q ∈ R. As a direct application, we obtain many new
results and simple proofs of well-known results in the multifractal analysis of
self-similar measures satisfying the weak separation condition.
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1. INTRODUCTION

Given a finite Borel measure µ, a standard way to quantify the density of µ at a
given point x in its support is through the local dimension, which is the quantity

dimloc(µ, x) = lim
r→0

log µ
(
B(x, r)

)
log r

when the limit exists. A natural question to ask is the following: what is the
structure of the set of points which have a prescribed local dimension α? In many
interesting cases, these level sets of local dimensions are uncountable and dense
in suppµ, but have µ-measure zero for most values of α. We will focus on the
Hausdorff dimensions of these level sets of local dimensions, which we denote by

fµ(α) = dimH{x ∈ suppµ : dimloc(µ, x) = α}.

The function fµ is commonly known as the (fine Hausdorff) multifractal spectrum of
µ.

Related to the multifractal spectrum is the Lq-spectrum of the measure µ, which
is given by

τµ(q) = lim inf
r→0

log sup
∑

i µ(B(xi, r))
q

log r

where the supremum is taken over all disjoint families of balls {B(xi, r)}i with
xi ∈ suppµ. A standard application of Hölder’s inequality shows that τµ is a
concave function of q. The Lq-spectrum is related to the multifractal spectrum
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through a heuristic relationship known as the multifractal formalism. It states that if
the measure µ is “sufficiently nice”, then the multifractal spectrum is the concave
function given by

fµ(α) = τ ∗µ(α) = inf{αq − τµ(q) : q ∈ R}.

One can think of the Lq-spectrum as a sort of box-counting dimension, whereas
the multifractal spectrum is a generalization of the Hausdorff dimension. Of
course, the multifractal formalism does not hold in general: for example, in the
presence of non-conformality, it can happen that dimH K < dimBK [McM84],
in which case the multifractal formalism certainly fails. However, even when a
measure is “locally nice”, the multifractal formalism can fail: if µ1 and µ2 are prob-
ability measures with disjoint supports each satisfying the multifractal formalism
and ν = (µ1 + µ2)/2, then

(1.1)
τν(q) = min{τµ1(q), τµ2(q)}
fν(α) = max{fµ1(α), fµ2(α)}.

In particular, ν satisfies the multifractal formalism if and only if τµ1(q) ≤ τµ2(q) or
τµ2(q) ≤ τµ1(q). Our main result states, for a certain class of conformal measures,
that this phenomenon is the only way in which the multifractal formalism can fail.

More precisely, we will focus on the multifractal analysis of self-similar mea-
sures in R, which are defined as follows. Given a finite set of maps (Si)i∈I where
each Si : R → R is given by Si(x) = rix + di where 0 < |ri| < 1 and probabilities
(pi)i∈I with pi > 0 and

∑
pi = 1, the self-similar measure µ is uniquely defined by

µ =
∑
i∈I

pi · Siµ

where Siµ is the pushforward of µ by Si.
Self-similar measures are relatively regular by nature of their construction

(indeed, they have equal box and Hausdorff dimensions [Fal97]), so one might be
more optimistic for nice multifractal properties. For example, self-similar measures
are exact-dimensional [FH09], which means that there is precisely one value α
for which the level set {x ∈ suppµ : dimloc(µ, x) = α} has full µ-measure. If there
is an open set U satisfying

⋃
i∈I Si(U) ⊆ U where the union is disjoint, we say

that µ satisfies the open set condition [Hut81]. For such measures, the Lq-spectrum
is the unique smooth function satisfying

∑
i∈I p

q
i r

−τµ(q)
i = 1, and the multifractal

formalism holds [CM92; Pat97].
However, for self-similar measures with overlaps, the multifractal formalism

can fail. One of the earliest known examples of this fact is due to Hu and Lau
[HL01], where they show that the three-fold convolution of the Cantor measure
has an isolated point in its set of local dimensions, and therefore fails the multifrac-
tal formalism. This measure, and generalizations, have been studied in [FLW05;
HHN18; LW05; Shm05] among other papers. Another class of well-studied mea-
sures are the Bernoulli convolutions, which is the law of the random variable∑∞

n=0±λn for λ ∈ (0, 1) where the + and − signs are chosen with equal proba-
bilities. In this case, for any parameter λ ∈ (1/ϕ, 1) where ϕ is the Golden mean,
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the set of local dimensions has an isolated point [HH19, Proposition 2.2], and ϕ
is maximal with this property. Testud [Tes06] constructed self-similar measures
associated with digit-like sets for which the multifractal spectrum is non-concave
and the maximum of two non-trivial concave functions. Thus behaviour similar
to (1.1) can occur for self-similar measures with overlaps.

On the other hand, for Bernoulli convolutions with contraction ratio the re-
ciprocal of a simple Pisot number (the unique positive root of a polynomial
xk−xk−1−· · ·−x−1 for some k ≥ 2), the multifractal formalism is known to hold
[Fen05]. It is also shown in [Rut23] that any self-similar measure associated with
the IFS {λ1x, λ2x+λ1(1−λ2), λ2x+(1−λ2)} for λ1, λ2 > 0 and λ1+2λ2−λ1λ2 ≤ 1
satisfies the multifractal formalism. The Lq-spectra of self-similar measures also
have a certain amount of regularity: the limit defining τµ(q) is known to exist for
any q ≥ 0 [PS00].

We see that, even for self-similar measures, a wide variety of behaviour is
possible. Determining precisely when the multifractal formalism is satisfied, and
more generally understanding properties of the Lq-spectrum and multifractal
spectrum when it is not, is a very challenging question and little is known.

In this paper, we develop a general theory in an attempt to remedy this. We will
show for an important class of self-similar measures that the varied multifractal
behaviour observed above follows from a decomposition similar in form to (1.1).
More precisely, we show that the Lq-spectrum of µ is given by the minimum of a
finite set of concave functions, and the multifractal spectrum of µ is given by the
maximum of their concave conjugates. These concave functions can be loosely
interpreted as the Lq-spectra of a decomposition of µ as a sum of subadditive
set functions, each satisfying a multifractal formalism. By standard arguments
involving concave functions, this shows that the multifractal formalism holds for
µ in the following generic sense: µ satisfies the multifractal formalism if and only
if fµ is a concave function. This is in stark contrast to measures associated with
iterated function systems of non-conformal maps as discussed above.

1.1. The weak separation condition and finite type conditions. Many of the
examples mentioned in the preceding section satisfy various closely-related finite
type conditions [Fen03; HHR21; LN07; NW01]. Heuristically, these finite type
conditions require that there are only “finitely many overlaps” These separation
conditions are all special cases of the weak separation condition of Lau and Ngai
[LN99], which states that there is a uniform bound on the number of simultaneous
“distinct overlaps” (see (3.9) for a precise statement). Note that the weak separation
condition is strictly weaker than the open set condition. When the invariant
set suppµ is a closed interval, the generalized finite type condition coincides
with the weak separation condition [Fen16; HHR21]. It is an open question to
determine, outside certain degenerate situations, if these two separation conditions
are equivalent in general.

The multifractal analysis of such measures have been extensively studied
since. Such measures have enough structure to allow strong results, yet the
class contains many interesting examples and exceptional behaviour. The most
significant general result to date, due to Feng and Lau [FL09], states that for self-
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similar measures satisfying the weak separation condition in Rd, the multifractal
formalism holds for any q ≥ 0, and for q < 0 there is an open set U0 on which µ is
sufficiently regular so that the Lq- and multifractal spectra restricted to U0 satisfy
the multifractal formalism. However, the relatively open set U0 ∩ K is almost
always a proper subset of K, so this result only gives a (somewhat coarse) lower
bound for fµ. The case for q < 0 is more challenging to establish in general: indeed,
we already saw for such self-similar measures that the multifractal formalism need
not hold.

For measures satisfying the weak separation condition in R, the author recently
established general conditions based on connectivity properties of an associated
graph for which the regularity on the set U0 can be extended to the entire set K
[Rut23]. This can be applied to verify the multifractal formalism for all q ∈ R for
certain examples such as those discussed in [LW04, Proposition 4.3] or [DN17,
Example 8.5].

Our work here extends these results under a slightly more specialized hypoth-
esis (detailed in Definition 3.14). We will discuss our technical conditions and
results in detail in the following section. We are not aware of any IFS satisfying
the weak separation condition for which the technical conditions do not hold.

1.2. Main results and outline of the paper.

1.2.1. Symbolic encoding and the transition graph. In §3, we define a generalized
version of the constructions in [Fen03; HHS21a; Rut23] which provides a more
cohesive perspective on the “net interval” constructions defined therein and sim-
plifies the study of certain examples. The construction is based on the idea of an
iteration rule Φ (see Definition 3.3), which describes how to define inductively a
nested hierarchy of partitions {Pn}∞n=0 in a way which depends only on the local
geometry ofK (see Proposition 3.5). The end result is to construct a rooted directed
graph G, which we call the transition graph. The edges of the graph G are equipped
with matrices T (e), such that norms of products of matrices corresponding to finite
paths beginning at the root vertex encode the measure µ on a rich family of subsets
(this result is given in Proposition 3.12). When the transition graph G is finite, we
say that the IFS satisfies the finite neighbour condition with respect to Φ, or the Φ-FNC
for short (see Definition 3.14). For the remainder of this paper, we will assume
that this condition is satisfied.

We denote by Ω∞ the set of infinite paths in G originating at the root vertex,
which is equipped with an “almost injective” Lipschitz projection π : Ω∞ → K.
The set Ω∞ can be thought of as “symbolic” analogue ofK, where the weightsW (e)
encode the metric structure of K and the matrices T (e) encode the self-similar
measure µ. Generally speaking, we will establish results in the space Ω∞, and then
transfer the results to the self-similar measure µ using separation conditions.

The graph G need not be strongly connected. We call the non-trivial connected
components of G loop classes, which we define fully in §4.1. Since the tail of any
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FIGURE 1. A “generic” transition graph

infinite path is an infinite path in a loop class, we obtain a decomposition

Ω∞ =
m⋃
i=1

Ω∞
Li

for appropriate sets Ω∞
Li

, where the union is disjoint. This decomposition of G will
correspond directly (outside certain degenerate situations) with the decomposition
given in Theorem B. A figure depicting a (hypothetical) transition graph can
be found in Figure 1 and one can observe that there are 4 non-trivial strongly
connected components Li for i = 1, . . . , 4.

1.2.2. Loop classes and the upper bounds. There can be components Li where the
corresponding sets π(ΩLi

) ⊆ K have measure 0 (in Figure 1, this is L1, L2, and
L3). However, even though the measure µ cannot be restricted to π(ΩLi

) in a
sensible way, the corresponding symbolic measure (which we denote by ρ) does
restrict properly. In §5.1, we define symbolic analogues τLi

of the Lq-spectrum and
fLi

of the multifractal spectrum for the loop classes Li. These functions can be
interpreted as Lq-spectra and multifractal spectra of some appropriate subadditive
set functions defined on π(ΩLi

).
In Lemma 6.14 and Theorem 6.6, we establish the following general upper

bounds.

Theorem A. Suppose µ is a self-similar measure satisfying the Φ-FNC with loop classes
L1, . . . ,Lm and corresponding symbolic Lq-spectra τL1 , . . . , τLm . Then

fµ(α) ≤ max{τ ∗1 (α), . . . , τ ∗m(α)} τµ(q) ≤ min{τ1(q), . . . , τm(q)}.

Unlike the general upper bound fµ ≤ τ ∗µ [LN99, Theorem 4.1], this upper bound
for fµ follows by an argument which depends sensitively on the existence of
the local dimension in the definition of fµ(α). The precise ideas here can be
found in Lemma 6.4 and the surrounding discussion. Note that upper bound
given in Theorem A is a non-trivial improvement on the general bound τ ∗µ when
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max{τ ∗1 , . . . , τ ∗m} is not a concave function. Indeed, since τµ(q) ≤ τi(q), we have
τ ∗µ(α) ≥ τ ∗i (α) so that

τ ∗µ ≥ max{τ ∗1 , . . . , τ ∗m},

but τ ∗µ is necessarily concave.

1.2.3. Irreducibility, decomposability, and the lower bounds. In order to establish
the lower bounds, we require two main assumptions. The first, which we call
irreducibility, can be interpreted as an internal connectivity property for the loop
classes, and depends only on properties of the paths and transition matrices
internal to some loop class Li (see §4.2). This property was introduced and
studied in [Fen09]; as with that paper, this result is essential for establishing the
symbolic multifractal formalism in Theorem 5.8. The irreducibility assumption
is also important to resolve the fact that the projection π is not, in general, bi-
Lipschitz. This technical result is given in Theorem 5.12. While irreducibility
formally depends on the choice of probabilities, in practice, every example of
which the author is aware can be verified by the slightly stronger hypothesis of
Lemma 4.5, which does not depend on the choice of probabilities.

The second main assumption, which we call decomposability, is a statement
about the finite paths which do not have any edges in loop classes (see §4.3).
This property is closely related to the positive transition matrix assumption in
[HHS21b], and our proof of Theorem 6.15 largely follows the ideas in that docu-
ment. This assumption allows a product-like decomposition of Ω∞ as Ω∞

L1
× · · · ×

Ω∞
Lm

in a way which preserves the norms of matrices. See (6.3) for the precise
statement and application of this idea.

We will also assume a simple non-degeneracy property (given in Defini-
tion 6.12). Similar statements can be made assuming some loop classes are degen-
erate, but we omit this discussion for simplicity. We then have the following result,
proven in Corollary 6.13 and Theorem 6.15.

Theorem B. Suppose µ is a self-similar measure satisfying the Φ-FNC with loop classes
L1, . . . ,Lm and corresponding symbolic Lq-spectra τL1 , . . . , τLm . Suppose each loop class
is non-degenerate. Then:

(i) If the irreducibility assumption is satisfied,

fµ(α) = max{τ ∗L1
(α), . . . , τ ∗Lm

(α)}.

(ii) If the decomposability assumption is satisfied,

τµ(q) = min{τL1(q), . . . , τLm(q)}.

Moreover, the limit defining τµ(q) exists for every q ∈ R.

Outside the open set condition [AP96] and the case q ≥ 0 [PS00], there does not
appear to be any general existence results for the limit τµ(q) when µ is a self-similar
measure. Moreover, the author is not aware of any self-similar measure satisfying
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the weak separation condition which does not satisfy all the hypotheses in The-
orem B. To provide evidence for this claim, we observe that the hypotheses are
satisfied for a number of examples (see §7). However, verifying these conditions
in general seems to be challenging.

We can now use Theorem B to describe precisely when the multifractal formal-
ism holds. We say that µ satisfies the multifractal formalism at α if fµ(α) = τ ∗µ(α).
Recall that the subdifferential ∂τLi

(q) is the interval from the right derivative to
the left derivative of τLi

at q. The following result is proven in Corollary 7.1.

Corollary C. Let µ satisfy the same hypotheses as Theorem B, along with the irreducibility
and decomposability assumptions. Then µ satisfies the multifractal formalism at α if and
only if α ∈ ∂τLi

(q) for some 1 ≤ i ≤ m and q ∈ R with min{τL1(q), . . . , τLm(q)} =
τLi

(q). In particular, if the derivative α = τ ′µ(q) exists, then µ satisfies the multifractal
formalism at α.

In other words, the multifractal formalism fails precisely on phase transitions
(values of α corresponding to points of non-differentiability of the Lq-spectrum)
caused by transitions in min{τL1(q), . . . , τLm(q)} from some τLi

(q) to τLj
(q) for

i ̸= j. This corollary is highlighted in Figure 2 with two loop class L1 and L2 such
that τL1 and τL2 intersect. For values of α corresponding to the phase transition
of τµ = min{τL1 , τL2} at their intersection point q0, we see that τ ∗µ differs from
fµ = max{τ ∗L1

, τ ∗L2
}. Here, the multifractal formalism is satisfied at α if and only

if α /∈ (α2, α1). In fact, τ ∗µ is the infimal concave function bounded below by
fµ. Thus the phase transitions which cause the multifractal formalism to fail are
fundamentally linked to the connectivity properties of the transition graph. For
example, this provides a general explanation for the phenomenon observed by
Testud [Tes06] for self-similar measures associated with digit-like sets (see §7.2).

There can be phase transitions not of this form: for example, for the Bernoulli
convolution associated with the Golden mean, τµ = τL for a loop class L but
τµ(q) is not differentiable [Fen05]. Our results provide some explanation for the
phenomenon of self-similar measures with non-differentiable Lq-spectra which
still satisfy the multifractal formalism.

A simple loop class is a loop class where the edges can be ordered to form a
cycle which does not repeat vertices. In Figure 1, the simple loop classes are given
by L1 and L2. As a straightforward application of Theorem B along with basic
properties of concave functions, we obtain the following result. The proof of this
result can be found in §7.1.

Corollary D. Let µ satisfy the same hypotheses as Theorem B, along with the irreducibil-
ity and decomposability assumptions. Then µ satisfies the multifractal formalism if and
only if the multifractal spectrum is a concave function. In particular, if every non-essential
loop class is simple, this happens if and only if the set of local dimensions is a closed
interval.

1.2.4. Applications and analysis of examples. The hypotheses in Corollary D are
satisfied in many well-known examples. Here, we list some IFSs for which Corol-
lary D applies and every non-essential loop class is simple, so that any associated
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slope = α2

= τ
′
L2

(q0)

slope = α1

= τ
′
L1

(q0)

τL1

τL2

q0

min{τL1
, τL2

}

τL1
or τL2

(A) Lq-spectra

α2 α1

(min{τL1
, τL2

})∗

max{τ∗
L1

, τ∗
L2

}
phase transition

(B) Concave conjugates and multifractal spectra

FIGURE 2. An example illustrating a non-trivial phase transition

self-similar measure satisfies the multifractal formalism if and only if the set of
local dimensions is a closed interval:

• the family {x
d
+ j

md
(d − 1) : j = 0, 1, . . . ,m} with m ≥ d − 1 ≥ 1 integers,

which includes the 3-fold convolution of the Cantor measure [HL01], and is
discussed in detail in [HHN18, Section 5].

• Bernoulli convolutions with parameters that are reciprocals of simple Pisot
numbers [Fen05], or reciprocals of the Pisot roots of the polynomials x3 −
2x2 + x− 1, x4 − x3 − 2x2 + 1, and x4 − 2x3 + x− 1 (see §7.3).

• the IFS {ρx, ρ2x+ρ−ρ2, ρ2x+1−ρ2} where 1/ρ is the Golden mean, considered
in [HR22, Section 5.3.3].

By combining our results with the detailed study of sets of local dimensions
contained in the references cited above, we obtain a number of new examples of
measures satisfying the multifractal formalism which were not previously known
in the literature. Such results about the validity of the multifractal formalism
were previously only known for Bernoulli convolutions associated with simple
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Pisot numbers [Fen05]. We refer the reader to [HR22] for details related to the
computation of sets of local dimensions under similar assumptions to this paper.

To conclude this paper, we will provide a detailed study of some examples
in §7 to illustrate more concretely how our results may be applied in specific
situations. Our selection of examples does not attempt to be exhaustive, and the
examples are primarily chosen to illustrate how our results explain the different
multifractal phenomena exhibited by self-similar measures satisfying the weak
separation condition.

In §7.2, we study a family of self-similar measures associated with an IFS with
maps of the form x 7→ x/ℓ+ i/ℓ or x 7→ −x/ℓ+ (i+ 1)/ℓ where ℓ ≥ 2 is an integer
and i ∈ {0, 1, . . . , ℓ−1}. Such measures were first studied by Testud [Tes06], where
he provided some of the first known examples of self-similar measures which
exhibit non-trivial non-concave spectra. Our results extend and contextualize
his results, since we do not require any assumptions on the digit sets. This also
extends results obtained by Olsen & Snigireva [OS08] for such measures.

In §7.3, we provide a simple (given our general results) verification of the
multifractal formalism for Bernoulli convolutions with parameters that are recip-
rocals of simple Pisot numbers. This fact was first observed by Feng [Fen05]. Our
technique is more general and depends only on establishing certain structural
properties of the transition graph. Our results also apply, for example, to the
polynomials x3 − 2x2 + x− 1, x4 − x3 − 2x2 + 1, and x4 − 2x3 + x− 1.

Finally, in §7.4, we verify the multifractal formalism for any self-similar mea-
sure associated with a class of IFS generalizing an example of Lau & Wang [LW04],
which is the IFS {λ1x, λ2x + λ1(1 − λ2), λ2x + (1 − λ2)}. The multifractal formal-
ism for the self-similar measure studied by Lau & Wang was first verified by the
author in a recent paper [Rut23]. We provide a simplified proof of this fact, which
generalizes naturally to a family of related examples (which also includes [DN17,
Example 8.5]).

1.2.5. Questions. We conclude this section with three natural questions.
1. Are the hypotheses in Theorem B satisfied for every measure µ satisfying

the weak separation condition? Both a counterexample or a proof of non-
existence here would be very interesting.

2. In what generality does a version of Theorem B hold? Is the multifractal
spectrum of any self-similar measure always the maximum of a finite set of
concave functions?

3. If µ is a self-similar (or self-conformal) measure and fµ is a concave function,
is it necessarily true that µ satisfies the multifractal formalism?

1.3. Notation. Given a general set X , we denote by #X the cardinality of the set
X .

We work in R with the standard Euclidean metric. All sets and functions in
this document are Borel unless otherwise noted. If µ is a Borel measure and f a
measurable function, we denote by fµ the push-forward of µ by f , which is given
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by the rule

fµ(E) = µ(f−1(E)).

Given a Borel set E, we write E◦ to denote the topological interior and diam(E)
the diameter of E.

Given families (ai)i∈I and (bi)i∈I of non-negative real numbers, we write ai ≲ bi
if there exists some constant C > 0 such that ai ≤ Cbi for each i ∈ I . We say
ai ≈ bi if ai ≲ bi and bi ≲ ai. We will always allow such relationships to depend
implicitly on the governing weighted iterated function system and the transition
rule Φ. Any other dependence, unless otherwise stated, will be indicated explicitly
with a subscript.

2. SOME BRIEF PRELIMINARIES

2.1. Weighted iterated function systems. In our setting, a weighted iterated func-
tion system (WIFS) is a tuple (Si, pi)i∈I where

(2.1) Si(x) = rix+ di : R → R for each i ∈ I

with 0 < |ri| < 1, so that each Si is a contracting similarity in R, and the pi satisfy
pi > 0 and

∑
pi = 1. We refer to the tuple (Si)i∈I simply as an iterated function

system (IFS).
There are two important invariant objects associated with a WIFS, both of

which can be realized as the unique fixed point of a contraction mapping on an
appropriate metric space. The first is a non-empty, compact set K satisfying

K =
⋃
i∈I

Si(K),

known as the self-similar set associated with the WIFS. The second is a Borel
probability measure µ satisfying

(2.2) µ(E) =
m∑
i=1

pi · Siµ(E)

for any Borel set E ⊆ K, where Siµ(E) = µ(S−1
i (E)) is the pushforward of µ by

Si. We say that µ is the self-similar measure associated with the WIFS. We refer the
reader to the book of Falconer [Fal97] for details concerning the existence and
uniqueness of these objects.

Note that suppµ = K. Throughout this document, we will assume that K is
not a singleton, so that µ is a non-atomic measure. By conjugating the maps as
necessary (which amounts to an appropriate translation of the di), we may assume
that the convex hull of K is [0, 1].

Let I∗ =
⋃∞

n=0 In denote the set of finite tuples on I. Given σ = (σ1, . . . , σn) ∈
In, write

Sσ = Sσ1 ◦ · · · ◦ Sσn , rσ = rσ1 · · · rσn ,
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and

pσ = pσ1 · · · pσn .

Abusing notation slightly, we denote the empty word (the unique word of length
zero) by ∅ and write S∅ = id, p∅ = 1, and r∅ = 1. Given another word τ =
(τ1, . . . , τm), the concatenation στ is the word (σ1, . . . , σn, τ1, . . . , τm). We say that a
word σ is a prefix of τ if there exists some ω such that τ = σω.

2.2. Concave functions. Let f : R → R∪{−∞} be a concave function. The
subdifferential of f at x is given by

∂f(x) = {α : α(y − x) + f(x) ≥ f(y) for any y ∈ R}.

Of course, if f is differentiable at x, then ∂f(x) = {f ′(x)}. The concave conjugate of
f is the function

f ∗(α) := inf{αx− f(x) : x ∈ R}.

Naturally, the infimum may be attained at −∞. Note that f ∗ is always concave,
and concave convolution is involutive (i.e. f ∗∗ = f when f is a concave function).
We will use the fact that f ∗(α) + f(x) = αx whenever α ∈ ∂f(x).

We refer the reader to [Roc70] for more detail and proofs of these facts.

2.3. Local dimensions and multifractal analysis. Let µ be a finite Borel measure
in R with compact support.

Definition 2.1. Let x ∈ suppµ be arbitrary. Then the lower local dimension of µ at x
is given by

dimloc(µ, x) = lim inf
t→0

log µ(B(x, t))

log t

and the upper local dimension dimloc(µ, x) is given similarly with the limit inferior
replaced by the limit superior. When the values of the upper and lower local
dimension agree, we call the shared value the local dimension of µ at x, denoted
dimloc(µ, x).

We are primarily interested in understanding geometric properties of the level sets
of local dimensions. Define

Eµ(α) =
{
x ∈ suppµ : dimloc(µ, x) = dimloc(µ, x) = α

}
.

We will focus on the (fine Hausdorff) multifractal spectrum of µ, which is the function
fµ : R → R∪{−∞} given by

fµ(α) := dimH Eµ(α)

where, by convention, we write dimH ∅ = −∞.
A different (but related) way to quantify the density of µ is through the Lq-

spectrum of the measure.
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Definition 2.2. The Lq-spectrum of µ is given by

τµ(q) = lim inf
t→0

log sup
∑

i µ(B(xi, t))
q

log t

where the supremum is over families of disjoint balls {B(xi, t)}mi=1 centred at
xi ∈ K.

Standard arguments show that the function τµ is an increasing concave function of
q. Set

αmin(µ) = lim
q→∞

τµ(q)

q
αmax(µ) = lim

q→−∞

τµ(q)

q
.

When µ is a self-similar measure, it is known that αmin and αmax are finite real
numbers (see, for example, [FL09, Corollary 3.2]).

The multifractal formalism is a heuristic relationship introduced in [HJK+86]
which relates the Lq-spectrum and the multifractal spectrum of µ under certain
conditions.

Definition 2.3. Given α ∈ R, we say that the measure µ satisfies the multifractal
formalism at α if

fµ(α) = τ ∗µ(α)

where τ ∗µ is the concave conjugate of τµ. We say that µ satisfies the (complete)
multifractal formalism if µ satisfies the multifractal formalism at every α ∈ R.

In particular, fµ(α) is a concave function which takes finite values precisely on the
interval [αmin(µ), αmax(µ)].

It always holds that fµ(α) ≤ τ ∗µ(α) (see, for example, [LN99, Theorem 4.1]) and
if Eµ(α) is non-empty, then αmin ≤ α ≤ αmax [FL09, Corollary 3.2]. However, as
discussed in the introduction, the set of α where Eµ(α) ̸= ∅ need not be a closed
interval and, even if it is, the multifractal formalism need not hold [Tes06].

3. A GENERALIZED TRANSITION GRAPH CONSTRUCTION

Self-similar measures have a natural encoding as a projection of self-similar mea-
sures in sequence space. Let I∞ denote the set of all infinite sequences on the alpha-
bet I equipped with the natural product metric. Given a sequence (in)

∞
n=1 ∈ I∞,

define the projection π0 : I∞ → K by the rule

π0((in)
∞
n=1) = lim

n→∞
Si1 ◦ · · · ◦ Sin(0).

When the compact sets Si(K) are disjoint for distinct i ∈ I, the map π0 is bi-
Lipschitz. In this case, the value of the measure µ has a simple formula for a rich
family of subsets of K, namely

(3.1) µ
(
Si1 ◦ · · · ◦ Sin(K)

)
= pi1 · · · pin .



14 ALEX RUTAR

However, when the measure µ has overlaps, such a simple formula no longer holds
since the projection π0 fails (in some situations quite badly) to be bi-Lipschitz.

A technique to overcome this limitation was first introduced by Feng [Fen03]
and extended in [HHS21a; Rut23]. In the subsequent sections, we will introduce a
convenient framework which generalizes the prior net interval constructions; this
will allow the simplification of analysis of examples in §7. As this construction
underlies all the results in this paper, we informally summarize the main ideas
here.

Recall that the convex hull of K is [0, 1]. In §3.1, we inductively construct a
nested sequence of partitions of K with mesh size tending to 0, which we will
denote by (Pn)

∞
n=0. Here, a partition Pn is a finite collection of closed intervals

{∆1, . . . ,∆ℓ} where ∆◦
i ∩∆◦

j = ∅ for i ̸= j, ∆◦
i ∩K ̸= ∅, and K ⊂

⋃k
i=1∆i. We set

P0 = {[0, 1]}. We will associate to each ∆ ∈ Pn a neighbour set V(∆) (an ordered
tuple of similarity maps from R to R) such that each similarity map is a normalized
version of some word Sσ with Sσ(K) ∩ ∆◦. In the sense of Lemma 3.4, we also
require that V(∆) does not contain repetitions and satisfies a sort of maximality.
For a given ∆ ∈ Pn, we want that the children {∆′ : ∆′ ∈ Pn+1,∆

′ ⊂ ∆} depend
uniquely on V(∆), as made precise in Proposition 3.5. The (basic) iteration rule
given in Definition 3.1 and Definition 3.3 underpins this inductive construction
(we think of the domain of an iteration rule as the set of all possible neighbour sets
of net intervals), and the technical hypotheses ensure that the various properties
listed above are satisfied. Now, in §3.2, we construct a directed transition graph
G with root vertex vroot such that the finite paths in G of length n are in bijection
with the partitions Pn (see Lemma 3.9). We associate to the edges in G transition
matrices such that the µ-measure of a net interval is the norm of the corresponding
products of matrices (see Proposition 3.12).

Our main assumption from this point on will be that the graph G is finite; more
details on this assumption are given in §3.4. While G is not, in general, strongly
connected, we can enumerate the non-trivial maximal strongly connected compo-
nents as {L1, . . . ,Lm} (we refer to these as loop classes, as defined in Definition 4.1).
Denote the set of infinite paths in G beginning at vroot by Ω∞. Given an infinite
path (en)

∞
n=1 in Ω∞, there is a unique loop class Li such that for all n sufficiently

large, en is an edge in some loop class Li. The bijections from finite paths of length
n to Pn induce a Lipschitz surjection π : Ω∞ → K (note that the metric structure on
Ω∞ is defined in §5.1, and depends on the edge weights). The space Ω∞ equipped
with the projection π is analogous to the space I∞ along with the projection π0.
Moreover, since the Pn are partitions of K, π is nearly a bijection (it is injective
on all but countably many points), and while π need not be bi-Lipschitz, it is
close to being so in a heuristic sense. The main cost is that we must replace the
products of scalars in (3.1) with norms of products of matrices. This introduces
additional technical challenges, which necessitate the assumptions of irreducibility
and decomposability. These hypotheses are discussed in more detail in §4.1.

3.1. Partitions and net intervals. We write by Sim(R) = {f(x) = ax + b : a ∈
R \{0}, b ∈ R} the set of similarity maps from R to R, and equip Sim(R) with the
total order induced by the lexicographic order on the pairs (a, b) (or any other
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fixed total order). We then denote by Sim∗(R) the set of finite tuples (f1, . . . , fm)
where f1 < · · · < fm and m ∈ N is arbitrary.

Definition 3.1. A basic iteration rule is a map Φ which associates to each tuple
(f1, . . . , fm) in Sim∗(R) a tuple (C1, . . . , Cm) where each Ci is a finite subset of I∗

satisfying the following condition: for all n ∈ N sufficiently large, every σ ∈ In

has a unique prefix in Ci.
A good example to keep in mind is the basic iteration rule Φ(f1, . . . , fm) =
(I, . . . , I). This example is discussed in more detail in Example 3.7.

Given a closed interval J ⊆ R, we denote by TJ the unique similarity TJ(x) =
rx+ a with r > 0 such that

TJ([0, 1]) = J.

Of course, r = diam(J) and a is the left endpoint of J .
Using the notion of a basic iteration rule, we can inductively construct a

hierarchy of partitions of K as follows. First, suppose we are given a pair (∆, v)
where ∆ = [a, b] is a closed interval and v = (f1, . . . , fm) ∈ Sim∗(R). Let

Y = Y(∆, v) =
m⋃
i=1

{T∆ ◦ fi ◦ Sτ : τ ∈ Ci, 1 ≤ i ≤ m}

Y = Y (∆, v) = {a, b} ∪ {g(z) : g ∈ Y , z ∈ {0, 1}, g(z) ∈ ∆}
(3.2)

and write the elements of Y as a = y1 < · · · < yk+1 = b. Order the intervals
{[yi, yi+1] : (yi, yi+1) ∩ K ̸= ∅} from left to right as (∆1, . . . ,∆n). We then define
the children of ∆ (with respect to Φ) as the set of pairs (∆i, vi) where vi is given by
ordering the distinct elements of the set

(3.3) {T−1
∆i

◦ g : g ∈ Y , g(K) ∩∆◦
i ̸= ∅}.

We call the net intervals ∆i the child net intervals of ∆. If ∆i = [ai, bi], the position
index is given by q(∆i,∆) = (ai − a)/ diam(∆). The position index is used to
distinguish distinct children of ∆ with the same neighbour set.

Now, using the above procedure, we can inductively construct our net intervals
and neighbour sets. Begin with the pair {([0, 1], (id))} = V0. Having constructed Vn

for some n ∈ N∪{0}, we denote by Vn+1 the set of all children of pairs (∆, v) ∈ Vn,
and let V =

⋃∞
n=0 Vn. Set

Pn = {∆ : (∆, v) ∈ Vn},

which is the set of all net intervals at level n. Since the net intervals are disjoint
except on endpoints, one may think of Pn as a partition of K.

Note that distinct intervals ∆ overlap at most on endpoints, and for each x ∈ K
and n ∈ N there is some ∆ ∈ Pn with x ∈ ∆. Given some (∆, v) ∈ Vn, we say
that ∆ is a net interval of level n, and that v is the neighbour set of ∆. We refer to a
similarity f ∈ v as a neighbour of ∆. When the level n is implicit, we write V(∆)
to denote the neighbour set v. For an example computing the net intervals and
neighbour sets, see Example 3.7.
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We make two basic observations which follow immediately from the construc-
tion by an induction argument.

• Let (∆, v) ∈ V with f ∈ v. Then T∆ ◦ f = Sσ for some σ ∈ I∗.

• If [a, b] = ∆ ∈ Pm, there exists some (∆0, v) ∈ Vk with k ≤ m and f ∈ v such
that a = T∆0 ◦ f(z) for some z ∈ {0, 1}. The same statement also holds for b.

Here is a short example illustrating the net interval construction, along with these
two observations.

Example 3.2. Consider the IFS given by the maps

S1(x) =
x

3
S2(x) =

x

3
+

2

9
S3(x) =

x

3
+

2

3

along with the basic iteration rule given by Φ(f1, . . . , fn) = (I, . . . , I). By definition
of Φ,

Y([0, 1], {id}) = {T[0,1] ◦ id ◦Si : i ∈ I} = {S1, S2, S3}

and, expanding the definition,

Y ([0, 1], {id}) = {Si(z) : i ∈ I, z ∈ {0, 1}} =
{
0,

2

9
,
1

3
,
5

9
,
2

3
, 1
}
.

Note that (2/3, 1) ∩ K = ∅ (since (2/3, 1) ∩ Si([0, 1]) = ∅ for each i ∈ I), so the
children of ∆ have net intervals ∆1 = [0, 2/9], ∆2 = [2/9, 1/3], ∆3 = [1/3, 5/9], and
∆4 = [2/3, 1]. These net intervals are depicted in Figure 3 along with their positions
relative to the intervals Si([0, 1]) for i = 1, 2, 3. For illustrative purposes, we also
compute V(∆2). We have T∆2(x) = x/3 + 2/9 so that T (x) := T−1

∆2
(x) = 9x− 2 and

V(∆2) = {T−1
∆2

◦ g : g ∈ Y , g(K) ∩∆◦
2 ̸= ∅} = {T ◦ Si : i = 1, 2}

= {x 7→ T (x/3), x 7→ T (x/3 + 2/9)} = {x 7→ 3x− 2, x 7→ 3x}.

If, furthermore, we wanted to compute the children of ∆2 in P2, we would begin
by computing

Y(∆2,V(∆2)) = {T∆2 ◦ f ◦ Si : i ∈ I, f ∈ V(∆2)}
= {Si ◦ Sj : i ∈ {1, 2}, j ∈ I}

and then continue as above.

In order to avoid certain degenerate situations, we require two additional
assumptions on the basic iteration rule Φ.

Definition 3.3. Let Φ be a basic iteration rule. We say that Φ is an iteration rule if
(i) lim

n→∞
max

(∆,v)∈Vn

max
{x 7→rx+a}∈v

r diam(∆) = 0, and

(ii) if (∆, v) ∈ V and f1 ̸= f2 ∈ v, then for any σ ∈ I∗, we have f1 ◦ Sσ ̸= f2.
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FIGURE 3. Net intervals in P1 as described in Example 3.2.

Note that if f ∈ V(∆) is any neighbour, then f(x) = ax+ b for some a ≥ 1. Thus,
(i) implies that the diameters of net intervals also tend uniformly to zero. In fact,
since K ⊆

⋃
∆∈Pn

∆ and the endpoints of each ∆ are elements of K,

∞⋂
n=0

⋃
∆∈Pn

∆ = K.

We now have the following basic lemma.

Lemma 3.4. Fix some pair (∆, v) ∈ Vn. Then for each f ∈ v, f(K) ∩ (0, 1) ̸= ∅, and

(3.4) ∆◦ ∩K = ∆◦ ∩
⋃
f∈v

T∆ ◦ f(K).

Moreover, if σ ∈ I∗ is any word satisfying Sσ(K) ∩∆◦ ̸= ∅, there is a unique word τ
such that T−1

∆ ◦ Sτ ∈ v and either τ is a prefix of σ or σ is a prefix of τ .

Proof. We prove (3.4) by induction on n. The case n = 0 is immediate, so
now let (∆, v) ∈ Vn have parent (∆′, v′) ∈ Vn−1. Write v′ = (f1, . . . , fm) and
Φ(v′) = (C1, . . . , Cm). Note that by definition of Φ, for each i,

K =
⋃
σ∈Ci

Sσ(K).

Thus by the inductive hypothesis,

(∆′)◦ ∩K = (∆′)◦ ∩
m⋃
i=1

⋃
σ∈Ci

T∆′ ◦ fi ◦ Sσ(K).

But by construction, if T∆′ ◦ fi ◦ Sσ(K)∩∆◦ ̸= ∅, then T−1
∆ ◦ T∆′ ◦ fi ◦ Sσ ∈ v, so the

result follows.
For the second part, the existence of the word τ follows by construction, and

uniqueness follows from (ii) in Definition 3.3. □

We now have the following fundamental result, the proof of which is similar to
[Rut23, Theorem 2.8]. We include the main details and leave additional verification
to the reader.

Proposition 3.5. Let (fi)i∈I be an IFS with basic iteration rule Φ. Then for any ∆(1) ∈
Pn1 with child net intervals (∆(1)

1 , . . . ,∆
(1)
m1), if ∆(2) ∈ Pn2 where V(∆(1)) = V(∆(2)) has

child net intervals (∆(2)
1 , . . . ,∆

(2)
m2), then m1 = m2 and for each 1 ≤ i ≤ m,
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(i) V(∆(1)
i ) = V(∆(2)

i ),
(ii) q(∆(1),∆

(1)
i ) = q(∆(2),∆

(2)
i ), and

(iii) diam(∆(1))/ diam(∆
(1)
i ) = diam(∆(2))/ diam(∆

(2)
i ).

Proof. For each j = 1, 2, let Yj, Yj correspond to the set ∆(j) as in (3.2) in the
definition of children. Then with ψ = T∆(1) ◦ T−1

∆(2) , we have Y1 = {ψ ◦ g : g ∈ Y2}
and ψ(Y2) = Y1. Thus with the elements of Y1 in order as y1 < · · · < yk+1, the
elements of Y2 are given in order as ψ(y1) < · · · < ψ(yk+1).

Now since

(∆(j))◦ ∩K = (∆(j))◦ ∩
⋃
f∈v

T∆(j) ◦ f(K)

from Lemma 3.4, it follows that ψ : ∆(2) ∩ K → ∆(1) ∩ K is a surjection so that
(yi, yi+1) ∩K ̸= ∅ if and only if (ψ(yi), ψ(yi+1)) ∩K ̸= ∅. Thus m1 = m2.

From here, (i), (ii), and (iii) follow by direct computation. □

Remark 3.6. Sometimes, it can hold that (∆, v) has a unique child (∆′, v′) where
∆ = ∆′. For technical purposes, in order to avoid this degenerate situation, it
is convenient to redefine the iteration rule Φ as follows. Write v = (f1, . . . , fm),
v′ = (g1, . . . , gk), and suppose Φ(v) = (C1, . . . , Cm) and Φ(v′) = (C ′

1, . . . , C ′
k). Since

∆ = ∆′, for each fi and σ ∈ Ci, either fi ◦ Sσ(K)∩∆◦ = ∅ or fi ◦ Sσ = gj for some j.
Now for each 1 ≤ i ≤ m and σ ∈ Ci, set

Ui,σ =

{
{∅} : fi ◦ Sσ(K) ∩∆◦ = ∅
Cj : fi ◦ Sσ = gj

and define

C̃i =
⋃
σ∈Ci

{στ : τ ∈ Ui,σ}.

Then define Φ̃ by Φ̃(v) = (C̃1, . . . , C̃m), and Φ̃ = Φ otherwise. It is straightforward
to verify that Φ̃ is an iteration rule, and with this definition, the children of (∆, v)
with respect to Φ̃ are precisely the children of (∆′, v′) with respect to Φ.

Note that an infinite sequence of children where all the net intervals are iden-
tical is disallowed by (i) in Definition 3.3. Repeating this construction, we may
thus assume that each net interval ∆ has at least two distinct children, and for any
∆ ∈ P , there is a unique n such that ∆ ∈ Pn.

We conclude with two examples explaining the relationship with our general
net interval construction and earlier net interval constructions. In practice, all
iteration rules the author has used fall into these two classes.

Example 3.7. As discussed, the rule

Φ(f1, . . . , fm) = (I, . . . , I)
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always defines an iteration rule. Here, the neighbour sets and net intervals can be
described in a slightly different way. Enumerate the points {Sσ(0), Sσ(1) : σ ∈ In}
in increasing order as 0 = y0 < y1 < · · · < ys(n) = 1. We claim that

(3.5) Pn = {[yi, yi+1] : (yi, yi+1) ∩K ̸= ∅, 0 ≤ i < s(n)}

and for a net interval ∆ ∈ Pn,

(3.6) V(∆) = {T−1
∆ ◦ Sσ : σ ∈ In, Sσ(K) ∩∆◦ ̸= ∅}.

Let us prove that this holds by induction. When n = 0, (3.5) and (3.6) both hold
trivially. Thus suppose n ∈ N is arbitrary and ∆ = [a, b] ∈ Pn. From the definition
in (3.2) along with (3.5) and (3.6), we observe that

Y =
⋃

f∈V(∆)

{T∆ ◦ f ◦ Si : i ∈ I}

=
⋃

{σ∈In:Sσ(K)∩∆◦ ̸=∅}

{Sσi : i ∈ I}

= {Sσi : σ ∈ In, Sσ(K) ∩∆◦ ̸= ∅, i ∈ I}
= {Sτ : τ ∈ In+1, Sτ (K) ∩∆◦ ̸= ∅}.

and therefore

Y = {a, b} ∪ {Sτ (z) : z ∈ {0, 1}, τ ∈ In+1, Sτ (z) ∈ ∆}.

Thus the children of ∆ in Pn+1 are precisely of the form given in (3.5), and if ∆i is
any child of ∆, from the definition (3.3) it has neighbour set

V(∆i) = {T−1
∆i

◦ g : g ∈ Y , g(K)∩∆◦
i ̸= ∅} = {T−1

∆i
◦ Sτ : τ ∈ In+1, Sτ (K)∩∆◦

i ̸= ∅}

and (3.6) holds for ∆i. Since any net interval ∆ satisfies ∆◦ ∩ K ̸= ∅, every net
interval in Pn+1 must be given in this way. Thus (3.5) and (3.6) hold for Pn+1.

If each Si(x) = λx + di for some fixed 0 < λ < 1, the net intervals are the
same as those considered by Feng [Fen03], and our definition of a neighbour set
is closely related to the characteristic vector defined in that paper. See [Rut23,
Remark 2.2] for more details on this relationship.

Example 3.8. Given a tuple of similarities (f1, . . . , fm) with each fi(x) = aix+ bi,
let a = max{|ai| : 1 ≤ i ≤ m} and define

Ci =

{
I : |ai| = a

{∅} : |ai| < a

where we recall that ∅ denotes the empty word. Then the map Φ(f1, . . . , fm) =
(C1, . . . , Cm) defines an iteration rule which gives the net intervals and neighbour
sets as defined in [Rut23, Section 2.2]. Indeed, with this construction, the rule
defining children of ∆ described above coincides exactly with the notion of the
child of a net interval from [Rut23, Section 2.3].
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3.2. The transition graph and symbolic representations. We begin by introduc-
ing some useful terminology from graph theory. By a rooted graph G, we mean a
directed graph (possibly with loops and multiple edges) consisting of a set V (G)
of vertices with a distinguished vertex vroot ∈ V (G), and a set E(G) of edges. By
an edge e, we mean a triple e = (v1, v2, q) where v1 ∈ V (G) is the source, v2 ∈ V (G)
is the target, and q is the label of the edge e. The point of the label is to distinguish
multiple edges, but it is safe to imagine that the graph does not have multiple
edges.

A finite path in G is a sequence η = (e1, . . . , en) of edges in G such that the target
of each ei is the source of ei+1. We say that the length of η is n, and denote this
by |η|. A finite path is a cycle if, in addition, the source of e1 is the target of en.
A (one-way) infinite path is a sequence (ei)

∞
i=1 where the target of each ei is the

source of ei+1 for i ∈ N. Given paths η1 = (e1, . . . , en) and η2 = (en+1, . . . , en+m), if
the target of en is the source of en+1, the concatenation η1η2 is the path (e1, . . . , en+m).
When it is convenient, we will abuse notation and treat edges as paths of length 1.

We say that a (finite or infinite) path is rooted if it begins at the root vertex vroot,
and we denote by Ω∞(G, vroot) (resp. Ω∗(G, vroot)) the set of all infinite (resp. finite)
rooted paths. We simply write Ω∞ and Ω∗ when the rooted graph is clear from the
context. For any n ∈ N∪{0}, Ωn denotes the set of all rooted paths of length n. We
say that η1 is a prefix of η in Ω∗ (resp. Ω∞) if η = η1η

′ for some finite (resp. infinite)
path η′. Given a path γ = (ei)

∞
i=1 ∈ Ω∞, we denote the unique prefix of γ in Ωn by

γ|n = (e1, . . . , en).
We now define the main object in consideration in this document. Fix a

WIFS (Si, pi)i∈I along with an iteration rule Φ. Then the transition graph G =
G
(
(Si, pi)i∈I ,Φ

)
, is a rooted graph defined as follows. The vertex set of G is the set

of all neighbour sets {v : (∆, v) ∈ V} with root vertex vroot = {id} corresponding
to the net interval [0, 1]. Now whenever (∆, v) has child (∆′, v′), we introduce an
edge (v, v′, q(∆,∆′)), where the position index q(∆,∆′) is the label distinguishing
multiple edges between the vertices v and v′. This construction is well-defined by
Proposition 3.5. Given a vertex v ∈ V (G), which is a neighbour set v = (f1, . . . , fm),
we write d(v) = m. For the remainder of this document, the set Ω∞ (and Ω∗, Ωn)
will always be associated with the transition graph G

Now given a path η = (e1, . . . , en) ∈ Ωn, there is a unique sequence of net
intervals (∆i, vi)

n
i=0 with ∆0 = [0, 1] where each (∆i, vi) ∈ Vi, ∆i+1 is the child of

∆i, and

ei =
(
vi, vi+1, q(∆i,∆i+1)

)
.

This follows directly by construction of the edge set of the transition graph G. Since
net intervals either coincide or overlap only on endpoints, this path is uniquely
determined by the last net interval in the sequence. Thus we may define a map
π : Ωn → Pn by π(η) = ∆n.

Lemma 3.9. The map π : Ωn → Pn is a well-defined bijection for each n ∈ N∪{0}.

Given a net interval ∆ ∈ Pn, the symbolic representation of ∆ is the path π−1(∆) ∈
Ωn.
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Now given an infinite path γ = (ei)
∞
i=1 ∈ Ω∞, there corresponds a sequence

of net intervals (∆i)
∞
i=0 with ∆i ∈ Pi where ∆0 = [0, 1] and ∆i+1 is the child of ∆i

corresponding to the edge ei+1. Of course, ∆n = π(γ|n). Since limi→∞ diam(∆i) =
0, there exists a unique point in K, which we call π(γ), satisfying

{π(γ)} =
∞⋂
i=1

∆i.

In analogy to the net interval case, we refer to a path γ ∈ π−1(x) as a symbolic
representation of x. It is clear by construction of net intervals that the map π : Ω∞ →
K is surjective. Note that π need not be injective, but if x ∈ K has fibre π−1(x)
with cardinality greater than 1, then x must be an endpoint of some net interval ∆.
In this situation, π−1(x) contains two paths. Since there are only countably many
net intervals, π is injective on all but at most countably many paths. We say that x
is an interior point of K if π−1(x) has cardinality 1.

3.3. Edge weights and transition matrices. For our purposes, perhaps the two
most important attributes of a net interval ∆ are its diameter diam(∆) and measure
µ(∆). Recall that we have a correspondence π : Ωn → Pn taking rooted paths in
the transition graph to net intervals in R. Through this correspondence, we get
the corresponding “symbolic diameter” diam ◦π and “symbolic measure” µ ◦ π
defined on the set of rooted finite paths Ω∗. In this section, we will define two
natural objects which takes values on E(G) which will allow us to encode the
functions diam ◦π and µ ◦ π respectively in a way intrinsic to the transition graph.

We first describe diam ◦π as a product of weights on edges.

Definition 3.10. The edge weight function for G is the map W : E(G) → (0, 1) such
that if the edge e corresponds to the child ∆′ ⊆ ∆, thenW (e) = diam(∆′)/ diam(∆).
Given a path η = (e1, . . . , en), we write W (η) = W (e1) · · ·W (en).

Note that the edge weight is well-defined by Proposition 3.5 (see also Remark 3.6).
Of course, when ∆ ∈ Pn has symbolic representation η = (ei)

n
i=1,

diam(∆) = diam(π(η)) = W (e1) · · ·W (en) = W (η),

so that diam ◦π = W .
We now describe µ ◦ π as the norm of products of matrices associated with

edges. Let e ∈ E(G) be an edge corresponding to (∆1, (f1, . . . , fm)) the parent of
(∆2, (g1, . . . , gn)), and let Φ(f1, . . . , fm) = (C1, . . . , Cm) where Φ is the iteration rule.
For each (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, set

Ei,j = {ω ∈ Ci : T∆1 ◦ fi ◦ Sω = T∆2 ◦ gj}.

Then the transition matrix is the n×m matrix T (e) given by

(3.7) T (e)i,j =
fiµ((0, 1))

gjµ((0, 1))
·
∑
ω∈Ei,j

pω
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where we recall that fµ is the pushforward of µ by the function f . It is clear that
the transition matrix depends only on the edge e. We note the following important
observations.

Lemma 3.11. If e ∈ E(G) is any edge, then T (e) has a positive entry in each column.
Moreover, for any v ∈ V (G) and 1 ≤ i ≤ d(v), there is an edge e with source v such that
T (e) has a positive entry in row i.

Proof. Since each neighbour gj is of the form T∆2 ◦ T−1
∆1

◦ fi ◦ Sσ for some i and
(possibly empty) word σ, each column of T (e) has a non-negative entry.

To see the second part, let ∆ be a net interval with V(∆) = v. Since T∆((0, 1)) ∩
fi(K) ̸= ∅ for each 1 ≤ i ≤ m, there is some child ∆′ ⊆ ∆ such that T∆′((0, 1)) ∩
fi(K) ̸= ∅. Then if e is the edge corresponding to ∆′ ⊆ ∆, T (e) has a positive entry
in row i by Lemma 3.4 and the definition of the transition matrix. □

Given a path η = (e1, . . . , en), we write T (η) = T (e1) · · ·T (en). We write ∥T (η)∥ =∑
i,j T (η)i,j to denote the matrix 1-norm.
Now fix a pair (∆, (f1, . . . , fm)) ∈ Vn, let Q(∆) = (q1, . . . , qm) where

(3.8) qi = fiµ((0, 1))
∑
σ∈I∗

Sσ=T∆◦fi

pσ.

Using the self-similarity relation of µ, the definition of the iteration rule Φ, condi-
tion (ii) in Definition 3.3, and Lemma 3.4 one can verify that

µ(∆) = ∥Q(∆)∥ .

Now a similar argument as the proof of [Rut23, Theorem 2.12] gives the following
result:

Proposition 3.12. Let (Si)i∈I have associated self-similar measure µ and fix an iteration
rule Φ. Then Q ◦ π = T for every n ∈ N, so if η ∈ Ωn,

µ(π(η)) = ∥T (η)∥ .

Proof. Let ∆ = π(η) and let η end at the vertex v. Given (∆, v) ∈ Vn, there exists
a unique sequence (∆i, vi)

n
i=0 where (∆i, vi) ∈ Vi, ∆i+1 is a child of ∆i, and ∆n = ∆.

Now for f ∈ v, let T∆ ◦ f = Sσ for some σ ∈ I∗. Then one can write σ = σ1 . . . σn if
and only if σi ∈ Cj(i) where j(i) satisfies T−1

∆i
◦ f (i)

j(i) = Sσi
with vi = (f

(i)
1 , . . . , f

(i)
mi).

Thus the entry of T (η) corresponding to the index f is the sum of pσ over all σ
satisfying T∆ ◦ f = Sσ. □

We observe that the transition matrices are analogous to the role of the probabilities
(pi)i∈I as described in (3.1).

We conclude by mentioning the following straightforward but important prop-
erty of transition matrices.

Lemma 3.13. If η = η1η2 ∈ Ω∗ with η1 ∈ Ωn, then ∥T (η)∥ ≈n ∥T (η2)∥.
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Proof. By Lemma 3.11, every transition matrix has a non-zero entry in each
column, so a straightforward calculation shows that there exists some constant
a = a(η1) such that ∥T (η1η2)∥ ≥ a(η1) ∥T (η2)∥. On the other hand, ∥T (η1η2)∥ ≤
∥T (η1)∥ ∥T (η2)∥ by submultiplicativity of the matrix norm. But there are only
finitely many paths in Ωn, giving the result. □

3.4. The finite neighbour condition. Throughout this section, we have made no
assumptions about the IFS (Si)i∈I or the transition graph G. We now introduce the
main restriction of this paper.

The finite neighbour condition was introduced in [HHR21] as a variation of the
generalized finite type condition introduced by Lau and Ngai [LN07]. In general,
such “finite type” conditions attempt to capture the idea that an IFS only has
finitely many possible overlaps. It is known that the finite neighbour condition
is equivalent to the generalized finite type condition holding with respect to the
interval (0, 1) [HHR21]. We introduce the following definition, which is a natural
generalization of the usual finite neighbour condition with respect to our more
general transition graph construction.

Definition 3.14. We say that the IFS (Si)i∈I satisfies the finite neighbour condition
with respect to the iteration rule Φ, or the Φ-FNC for short, if the corresponding
transition graph is a finite graph.

Closely related to this finite neighbour condition is the weak separation condition.
This separation condition is satisfied if

(3.9) sup
x∈K,r>0

#{Sσ : r · rmin < |rσ| ≤ r, Sσ(K) ∩ (x− r, x+ r) ̸= ∅} <∞.

The weak separation condition was introduced by Lau and Ngai in [LN99]; this
definition is not the original but equivalent by [Zer96, Theorem 1]. Standard
arguments show that any IFS satisfying the Φ-FNC necessarily satisfies the weak
separation condition (see, for example, [HHR21; LN07]). Moreover, when K is
a convex set, the weak separation condition implies that the Φ-FNC holds with
respect to the iteration rule Φ from Example 3.8 [HHR21].

4. LOOP CLASSES, IRREDUCIBILITY, AND DECOMPOSABILITY

In this section, we introduce the notion of a loop class of the transition graph G, and
other related definitions. These definitions are required to state the main technical
assumptions (irreducibility and decomposability) which underpin the main results
presented later in this paper. We also discuss certain general situations in which
the technical assumptions are satisfied.

For the remainder of the paper (including this section), we will assume that
(Si, pi)i∈I satisfies the Φ-FNC with finite transition graph G. Note that many
concepts in this section hold more generally for an arbitrary transition graph
G, but we do not distinguish this during the subsequent discussions for sake of
simplicity.
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4.1. Loop classes. Let G be a directed multigraph. Recall that a graph H is an
induced subgraph of G if H is the graph consisting of the vertices V (H) and any
edge e ∈ E(G) such that e connects two vertices in H .

Definition 4.1. Let H be an induced subgraph of G. We say that H is strongly
connected if for any vertices v, w ∈ V (H), there is a directed path from v to w. Then
H is a loop class (in G) if it is strongly connected, contains at least one edge, and is
maximal with these properties.

Now if H is a loop class, we say that H is simple if each vertex in H has exactly
one outgoing edge (in H). We say that H is essential if for any v ∈ V (H) and
w ∈ V (G), if there is a directed path from v to w, then w ∈ V (H) as well.

Of course, any essential loop class is necessarily not simple. Note that distinct
loop classes have disjoint vertex and edge sets, but there may be vertices which
do not belong to any loop class.

Remark 4.2. Previous authors (e.g. [HHN18]) distinguished between loop classes
and maximal loop classes. In this document, our loop classes are always maximal.

Example 4.3. In Figure 1, the loop classes are given by {L1,L2,L3,L4}. The loop
classes L1 and L2 are simple, while L3 is not; and L4, being an essential loop class,
is not simple.

Since the transition graph G is a finite graph, there are only finitely many loop
classes. Given any path γ = (ei)

∞
i=1 ∈ Ω∞, there is a unique loop class L such

that there is some N such that for all k ≥ N , ek is an edge in L. We say that γ is
eventually in L and denote the set of all such γ by Ω∞

L .
We may now set

KL = {x ∈ K : π−1(x) ∩ Ω∞
L ̸= ∅} K int

L = {x ∈ K : π−1(x) ⊆ Ω∞
L }.

Of course, for each x ∈ K there is at least one loop class L such that x ∈ KL, and
at most two such sets. Note that K int

L is the topological interior of KL (relative to
K) if and only if L is an essential loop class. If x ∈ K is an interior point, then
x ∈ K int

L for a unique loop class L.
Our analysis is focused on two technical assumptions, which we call irre-

ducibility and decomposability. We discuss these assumptions in the following
two sections.

4.2. Irreducibility. Irreducibility can be loosely interpreted as a type of “measure
connectivity” within the loop class.

Definition 4.4. Let L be a loop class. We say that L is irreducible if there exists a
finite set of paths H such that for any paths η1, η2 in L, there is some γ ∈ H such
that η1γη2 is a path and

∥T (η1γη2)∥ ≈ ∥T (η1)∥ ∥T (η2)∥ .

We say that the transition graph G is irreducible if every loop class is irreducible.
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Since L is a finite graph, by submultiplicativity of the matrix norm, one can always
guarantee that

∥T (η1γη2)∥ ≲ ∥T (η1)∥ ∥T (η2)∥ .

On the other hand, establishing the lower inequality is more challenging. This
notion of irreducibility is motivated by various hypotheses studied by past authors
[Fen09; HR22]. We are not aware of any loop class of any IFS satisfying the finite
neighbour condition that does not satisfy this irreducibility hypothesis.

In the following lemmas, we observe that this technical hypothesis is satisfied
in a number of general cases.

Enumerate V (L) = {v1, . . . , vk}. For each 1 ≤ i, j ≤ k, let

Ai,j = {e ∈ E(G) : e is an edge from vi to vj} Mi,j =
∑
e∈Ai,j

T (e)

and define the block matrix

M =M(L) :=

M1,1 · · · M1,k
... . . . ...

Mk,1 · · · Mk,k


The following proof is straightforward and included in, say, [HR22]. Recall the
matrix M is irreducible if for each i, j, there exists some n = n(i, j) such that
(Mn)i,j > 0.

Lemma 4.5. Suppose the matrix M is irreducible. Then L is an irreducible loop class.

Proof. We first show for any vertices vi, vj ∈ V (L), 1 ≤ k ≤ d(vi), and 1 ≤ ℓ ≤
d(vj), there exists some path η = η(i, j, k, ℓ) from vi to vj such that T (η)k,ℓ > 0. Since
M is irreducible, there exists some n ∈ N such that the entry of Mn corresponding
to the index k, ℓ in the submatrix Mi,j is strictly positive. In particular, there exists
some sequence u1, . . . , un−1 such that(

Mi,u1 ·Mu1,u2 · · ·Mun−1,j

)
k,ℓ
> 0.

But then by definition of M , there is a corresponding path η joining the vertices
vi, vu1 , . . . , vun−1 , vj such that T (η)k,ℓ > 0, as required.

Now let H denote the finite set of paths η(i, j, k, ℓ) constructed as above for all
possible values of i, j, k, ℓ. Let A denote the smallest strictly positive entry for any
η ∈ H and let dmax = max{d(v) : v ∈ V (L)} (which is also the maximum number
of rows or columns of any transition matrix T (e) where e ∈ E(L)). Let η1, η2 be
any finite paths in L. By the pigeonhole principle, there exists some k, i, j, ℓ such
that T (η1)k,i ≥ d−2

max ∥T (η1)∥ and T (η2)j,ℓ ≥ d−2
max ∥T (η2)∥. Let ϕ ∈ H be a path from

the target vertex of η1 to the source vertex of η2 such that T (ϕ)i,j ≥ A > 0. Then

∥T (η1ϕη2)∥ ≥ T (η1)k,iT (ϕ)i,jT (η2)j,ℓ ≥ Ad−4
max ∥T (η1)∥ ∥T (η2)∥ .
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On the other hand, the upper bound follows since

∥T (η1ϕη2)∥ ≤ ∥T (η1)∥ ∥T (η2)∥max{∥T (ϕ)∥ : ϕ ∈ H}

by submultiplicativity of the norm. □

We next observe that an essential loop class is always irreducible.

Lemma 4.6. Let L be an essential loop class of G. Then L is irreducible.

Proof. In fact, we will show for any v, w ∈ V (L) and 1 ≤ i ≤ d(v), there exists
some path γ from v to w such that row i of T (γ) is strictly positive. The required
result will then follow by the same argument as Lemma 4.5.

Let ∆ be any net interval with V(∆) = v and neighbour set v = (f1, . . . , fd(v)).
Since T∆◦fi = Sσ0 for some σ0 ∈ I∗ with Sσ0(K)∩∆◦ ̸= ∅, there exists some word σ
with prefix σ0 such that Sσ ⊆ ∆. Let U = (x− r, x+ r) attain the supremum in (3.9)
with words τ1, . . . , τℓ satisfying r ·rmin < |rτk | ≤ r and Sτk(K)∩U ̸= ∅. Observe that
Sσ(U) also attains the supremum in (3.9) with words στ1, . . . , στℓ. By condition
(i) in Definition 3.3 and since L is an essential loop class, there exists some net
interval ∆1 ⊆ Sσ(U) with V(∆1) = w such that if g is any neighbour of ∆1, then
the contraction ratio T∆1 ◦ g is less than |rσ|r. Let γ be the path corresponding to
∆1 ⊆ ∆, which is necessarily a path from v to w in L.

It remains to show that row i of T (γ) is strictly positive. Let g ∈ V(∆1) be
arbitrary and let Sω = T∆1 ◦ g; by choice of ∆1, we have |rω| ≤ |rσ|r. Since
Sω(K) ∩ ∆◦ ̸= ∅, we have Sω(K) ∩ Sσ(U) ̸= ∅. Let ξ be the unique prefix of ω
with minimal length satisfying |rξ| ≤ |rσ|r. In particular, |rξ| > |rσ|r · rmin and
Sξ(K) ∩ Sσ(U) ̸= ∅, forcing Sξ = Sστj for some 1 ≤ j ≤ ℓ by maximality of ℓ.
Unpacking definitions, this means that there is some word ϕ such that

T∆1 ◦ g = Sσ0 ◦ Sϕ = T∆ ◦ fi ◦ Sϕ.

In other words, the entry in T (γ) corresponding to the neighbours fi of v and g of
w is strictly positive. Since g was an arbitrary neighbour of ∆1, the result follows.□

4.3. Decomposability. Unlike irreducibility which, up to a fixed constant multi-
ple, states that one can join paths within a loop class without changing the norm
of the corresponding transition matrix, decomposability states that for a given
path passing through multiple loop classes, the norm is comparable to the norms
of the components of the path within each loop class it passes through.

We begin by defining the notion of an initial path and a transition path in the
transition graph G as follows. Let G have loop classes L1, . . . ,Lm and root vertex
vroot. Let ψ = (e1, . . . , en) be a path in G connecting vertices (v0, v1, . . . , vn). We say
a path ψ is a transition path if

1. v0 is a vertex in V (Lj) for some j,
2. vn is a vertex in V (Lk) for some k ̸= j, and
3. each vi with 0 < i < n is not a vertex in any loop class.

Similarly, we say that ψ is an initial path if we replace condition (1) with
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(1’) v0 = vroot
There are only finitely many initial paths and transition paths since they cannot
repeat vertices.

By definition of the loop class, we can sort the loop classes L1, . . . ,Lm in a (not
necessarily unique) order such that if ψ is any transition path joining loop classes
Li and Lj , then i < j. Now suppose η = (e1, . . . , en) ∈ Ω∗ is any finite rooted path.
Then we can uniquely write

η = ϕλ1ψ1 . . . ψm−1λm

for possibly empty paths ϕ, ψi, λi, where ϕ is an initial path, each λi is a path in Li,
and each ψi is a transition path. We call the tuple (λ1, . . . , λm) the decomposition of
the path η.

Example 4.7. In Figure 1, an example of a valid order is L1,L2,L3,L4. Note that
any decomposition can contain a maximum of 3 non-empty paths λi (correspond-
ing to the loop classes L1,L3,L4).

By convention, if λi is an empty path, we write ∥T (λi)∥ = 1.

Definition 4.8. We say that the transition graph G is decomposable if for any path
η ∈ Ω∗ with decomposition (λ1, . . . , λm), we have

∥T (η)∥ ≈ ∥T (λ1)∥ · · · ∥T (λm)∥

with constants depending only on the transition graph G.

We now discuss a few examples in which the transition graph G is decomposable.

Lemma 4.9. Suppose every transition path η has that T (η) is a strictly positive matrix.
Then G is decomposable.

Proof. Since there are only finitely many transition paths, there exists a constant
C > 0 such that for any transition path ψ and valid indices i, j, T (η)i,j ≥ C.
But now if η ∈ Ω∗ has decomposition (λ1, . . . , λm), we can uniquely write η =
ϕλ1ψ1 . . . ψm−1λm where each ψi is a transition path. Then by Lemma 3.13,

∥T (η)∥ = ∥T (ϕλ1ψ1 . . . ψm−1λm)∥ ≈ ∥T (λ1ψ1 . . . ψm−1λm)∥
≥ Cm−1 ∥T (λ1)∥ · · · ∥T (λm)∥ .

Of course, C and m depend only on G, so the lower bound holds. The upper
bound always follows by submultiplicativity of the matrix norm, since there are
only finitely many choices for the paths ϕ, ψi. □

Lemma 4.10. Suppose that every vertex in a non-essential loop class is a neighbour set of
size one. Then G is decomposable.

Proof. By Lemma 4.9, it suffices to show for any transition path η that T (η) is a
strictly positive matrix. By definition of an essential loop class, if η is a transition
path from loop classes Li to Lj , then Li is non-essential. Thus by assumption, η is
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a path beginning at a vertex with neighbour set consisting of a single neighbour,
so that T (η) is a matrix with 1 row. Since every transition matrix has a positive
entry in every column by Lemma 3.11, T (η) is a strictly positive matrix, so the
result follows by Lemma 4.9 □

We now establish an irreducibility type condition to guarantee that the transition
graph is decomposable when all non-essential loop classes are simple.

We begin with some general observations about non-negative irreducible
matrices. Let M be an irreducible matrix with spectral radius r. It is known that if
M is a strictly positive matrix, then the limit limk→∞Mk/rk exists [Sen81]. While
this limit need not exist in general if M is irreducible, using similar arguments,
one can show that there are constants c1, c2 > 0 such that for all n sufficiently large,
either Mn

i,j = 0 or

c1r
n ≤Mn

i,j ≤ c2r
n.

In particular, suppose M1, . . . ,Mk are irreducible matrices and A1, . . . , Ak+1 are
such that A = A1M

n1
1 · · ·AkM

nk
k Ak+1 ̸= 0. Then for all ni sufficiently large, if Mi

has spectral radius ri, either Aj,ℓ = 0 or

(4.1) Aj,ℓ ≈A1,...,Ak+1
rn1
1 · · · rnk

k .

This observation is the main idea in the following result.

Lemma 4.11. Suppose every non-essential loop class is simple. For each simple loop class
L, suppose there is a path θ in L beginning and ending at the same vertex such that T (θ)
is an irreducible matrix. Then G is decomposable.

Proof. For simplicity, we assume there is a unique essential class; the proof in
the general case follows similarly. Denote the simple loop classes by L1, . . . ,Lk,
and for each 1 ≤ i ≤ k, let θi be a cycle in V (Li) such that T (θi) is an irreducible
matrix. Let T (θi) have spectral radius ri.

If η ∈ Ω∗ is an arbitrary path, it has decomposition of the form (λ1, . . . , λk, ξ)

where λi = γ
(1)
i θni

i γ
(2)
i with ni maximal and ξ is a path in the essential loop class.

Since ni is maximal and Li is simple, the paths γ(1)i and γ
(2)
i have length at most

the length of θi, so there are only finitely many possible paths γ(j)i . Thus by (4.1),

∥T (λi)∥ ≈ rni
i .

Now, we may write

η = ϕθn1
1 ψ1θ

n2
2 . . . θnk

k ψkξ

where ϕ = ϕ′γ
(1)
1 with ϕ′ an initial path, and each ψi is of the form γ

(2)
i ψ′

iγ
(1)
i+1 for

i < k or γ(2)k ψ′
k, and the paths ψ′

i are transition paths. Of course, some of the paths
γ
(j)
i or ψ′

i may be the empty path. The point here is that there are only finitely
many possible choices for the paths ϕ, ψ1, . . . , ψk, independent of the choice of η.
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It always holds that ∥T (η)∥ ≲ ∥T (λ1)∥ · · · ∥T (λk)∥ ∥T (ξ)∥. Thus it suffices to
show that

∥T (η)∥ ≳ rn1
1 · · · rnk

k ∥T (ξ)∥ .

Let M = T (ϕθn1
1 ψ1θ

n2
2 . . . θnk

k ψk). By (4.1), for each index j, ℓ, either Mj,ℓ = 0 or

Mj,ℓ ≈ rn1
1 · · · rnk

k .

But now if T (ξ) has maximal entry T (ξ)p,q, we have ∥T (ξ)∥ ≳ T (ξ)p,q. Since
column p of the matrix M has a non-negative entry by Lemma 3.11, get p′ such
that Mp′,p ≳ rn1

1 · · · rnk
k and

∥T (η)∥ = ∥M · T (ξ)∥ ≥Mp′,pT (ξ)p,q ≳ rn1
1 · · · rnk

k ∥T (ξ)∥

as required. □

5. LOOP CLASS SPECTRA AND A MULTIFRACTAL FORMALISM

5.1. Measures and metric structure on paths in the transition graph. The set Ω∞

of infinite rooted paths has a natural metric space structure given by the weights.
Given paths γ1, γ2, define

d(γ1, γ2) = inf{W (η) : η a prefix of γ1 and γ2}.

The topology is generated by the closed and open cylinders

[η] := {γ ∈ Ω∗ : η a prefix of γ}.

It is easy to see that this space is compact and totally disconnected. Of course,
π([η]) = π(η) ∩ K where we recall that π(η) is the net interval with symbolic
representation η. It is productive to interpret the space Ω∞ with the above metric
as a “separated” version of the set K.

We have the following straightforward result:

Lemma 5.1. The map π : Ω∞ → K is Lipschitz with constant 1.

Proof. Let γ1 and γ2 be two distinct paths in Ω∞ with maximal common prefix
η ∈ Ωn, so that d(γ1, γ2) = W (η). Let ∆ ∈ Pn have symbolic representation η. By
definition, W (η) = diam(∆). But then π(γ1), π(γ2) ∈ ∆ so

|π(γ1)− π(γ2)| ≤ diam(∆) = W (η) = d(γ1, γ2)

as required. □

Our general philosophy is to establish multifractal properties of the space Ω∞ (in
terms of the corresponding subspaces Ω∞

L,ζ defined below), and then translate these
results to the self-similar measure µ. However, the main difficulty in establishing
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corresponding multifractal results is that the map π is not in general bi-Lipschitz
(even when restricted to the maximal domain on which it is injective). Many of
the technical results in the following sections are established to overcome this.

Since the graph G is not in general strongly connected, we will study subspaces
of Ω∞ corresponding to the loop classes. Fix a loop class L, and let ζ ∈ Ω∗ be a
fixed path which ends at a vertex v in L. Recall that Ω∞

L is the set of infinite paths
eventually in the loop class L. Now, define the set

Ω∞
L,ζ := {γ ∈ Ω∞

L : ζ is a prefix of γ}

This is a compact subspace of Ω∞ (note that the sets Ω∞
L need not be compact). We

also define the analogous sets

Ω∗
L,ζ := {η ∈ Ω∗

L : ζ is a prefix of η}

consisting of finite, rather than infinite, paths. Often, given η ∈ Ω∗
L,ζ , we will abuse

notation and write [η] to denote the cylinder [η] ∩ Ω∞
L,ζ ⊆ Ω∞.

Suppose ∆ = π(ζ) is the net interval with symbolic representation ζ . Then one
can verify that

π
(
Ω∞

L,ζ
)
= KL ∩∆.

We now turn our attention to the measure µ. Since distinct net intervals in the
same level overlap only on endpoints and the self-similar measure µ is non-atomic,
one can verify that the rule

µ(π(η)) = ∥T (η)∥

for paths η ∈ Ω∗ extends to a unique Borel measure on Ω∞. We would like to
restrict this measure µ ◦ π to the subsets Ω∞

L,ζ in a meaningful way. However, it
can happen that these sets can have measure 0 in Ω∞: in fact, they have non-zero
measure if and only if L is an essential loop class.

Regardless, it is convenient to simply consider the measure µ ◦ π as being
defined on finite rooted paths (or the corresponding cylinders). With this in mind,
we define a function ρ : Ω∗ → [0, 1] by the rule

ρ(η) = µ ◦ π(η).

Now ρ restricts naturally to a function ρ : Ω∗
L,ζ → [0, 1], though this restriction is

not in general additive.

5.1.1. Loop class Lq-spectra. We now use the function ρ to define an analogue of
the Lq-spectrum of measures for loop classes.

To motivate this, we first state an equivalent formulation of the Lq-spectrum of
µ using the function ρ. Set

F(t) =
{
η = (e1, . . . , en) ∈ Ω∗ : W (e1 . . . en) ≤ t < W (e1 . . . en−1)

}
.
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One can think of the sets F(t) as a “scale-uniform” analogue in Ω∞ of the parti-
tions Pn (which may contain intervals with vastly different diameters). We then
have the following standard result, which is a weighted version of [HHS21b,
Proposition 4.3] or [Fen03, Proposition 5.6]. We include the main details for the
convenience of the reader.

Proposition 5.2. Let µ be a self-similar measure satisfying the finite neighbour condition.
Then

τµ(q) = lim inf
t→0

log
∑

η∈F(t) ρ(η)
q

log t

Proof. First suppose x ∈ K and t > 0 is arbitrary, and let {B(xi, t)}i be any
centred packing of K. If η ∈ F(t) has x ∈ π(η), we always have π(η) ⊆ B(x, t), so
for q < 0 ∑

η∈F(t)

ρ(η)q ≥
∑
i

µ(B(xi, t))
q.

On the other hand, for q ≥ 0, since there are only finitely many edge weights,
there is some N such that #{η ∈ F(t) : π(η) ∩ B(x, t) ̸= ∅} ≤ N . Since a given
net interval π(η) overlaps with at most 2 distinct balls in {B(xi, t)}i, for q ≥ 0 by
Jensen’s inequality∑

i

µ(B(xi, t))
q ≤

∑
i

( ∑
η∈F(t)

π(η)∩B(xi,t)̸=∅

ρ(η)
)q

≲q

∑
η∈F(t)

ρ(η)q.

Thus

τµ(q) ≥ lim inf
t→0

log
∑

η∈F(t) ρ(η)
q

log t
.

Conversely, suppose ∆ = π(η) is some net interval, where η ∈ F(t). If f is
any neighbour of ∆, since f(K) ∩ (0, 1) ̸= ∅, there exists some word some ϵ > 0
and τ ∈ I∗ depending only on f such that f ◦ Sτ (K) ⊆ (ϵ, 1 − ϵ) and 0 < rτ < ϵ.
Since there are only finitely many neighbour sets, and hence only finitely many
neighbours, we may assume ϵ ≥ ϵ0 > 0 and pτ ≥ p0 > 0 for some fixed ϵ0, p0.

Now by Proposition 3.12 along with (3.8), there is some M > 0 fixed such that
there is f ∈ V(∆) satisfying

ρ(η) = µ(∆) ≤M
∑
σ∈I∗

Sσ=T∆◦f

pσ.

But then by choice of τ , with xη = T∆ ◦ f ◦ Sτ (0) ∈ K and rη = ϵ|rτ | diam(∆), we
have B(xη, rη) ⊆ ∆ and

ρ(η) ≥ µ(B(xη, rη)) ≥ µ(T∆ ◦ f ◦ Sτ (K)) ≳
∑
σ∈I∗

Sσ=T∆◦f

pσpτ ≳ ρ(η).
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Thus the centred packing {B(xη, rη)}η satisfies∑
η∈F(t)

µ(B(xη, rη))
q ≈q

∑
η∈F(t)

ρ(η)q.

But rη ≈ t, so for any q ∈ R,

τµ(q) ≤ lim inf
t→0

log
∑

η∈F(t) ρ(η)
q

log t
.

This gives the desired result. □

When q ≥ 0, for any “sufficiently uniform” (e.g. dyadic) partition of K, one
may always define the Lq-spectrum of any finite measure with respect to such
a partition (see, for example, [LN99, Proposition 3.1]). When q < 0, such an
operation is more delicate since the intervals in a partition can intersect K on sets
of disproportionately small µ-measure. Proposition 5.2 essentially states that the
partitions {π(η) : η ∈ F(t)} of K for t > 0 avoid this issue.

Now for t > 0, and ζ and L defined as above, set

FL,ζ(t) = F(t) ∩ Ω∗
L,ζ .

We then define

τL,ζ(q) = lim
t→0

log
∑

η∈FL,ζ(t)
ρ(η)q

log t
.

We have the following basic lemma. The argument giving existence of the limit is
similar to [Fen09, Lemma 2.2].

Lemma 5.3. The function τL,ζ(q) is a concave function of q, and the limit exists for any
q ∈ R. Moreover, if ζ ′ is any other path ending in L, then τL,ζ′ = τL,ζ .

Proof. Concavity is a standard application of Hölder’s inequality. We now see
existence of the limit. Write Aq(t) =

∑
η∈FL,ζ(t)

ρ(η)q. All implicit constants below
may depend on the choice of ζ .

First suppose q ≥ 0 and set r0 = Wmin · min{W (ζγw) : w ∈ V (L)} where
Wmin = min{W (e) : e ∈ E(L)}. Suppose η ∈ FL,ζ(r0t1t2), so we may write η = η1ϕ
where η1 ∈ FL,ζ(t2). If ϕ begins at the vertex w, by choice of r0 write ϕ = ψϕ0 such
that with η2 = ζγwψ, η2 ∈ FL,ζ(t2). Observe that W (ϕ0) ≈ r0 so there are only
finitely possible values of ∥T (ϕ0)∥. Thus by Lemma 3.13 we have ∥T (ψ)∥ ≈ ρ(η2)
so that

ρ(η) ≤ ρ(η1) ∥T (ψ)∥ ∥T (ϕ0)∥ ≲ ρ(η1)ρ(η2).

Thus Aq(r0t1t2) ≲q Aq(t1)Aq(t2) so the limit exists for q ≥ 0 by submultiplicativity.
Now suppose q < 0. Let ζ end at the vertex v ∈ V (L), and for eachw ∈ V (L), let

γw be a path in L from v tow. Given ηi ∈ FL,ζ(ti) for i = 1, 2 and ti sufficiently small,
write η2 = ζϕ2 so that W (ϕ2) ≈ t2 and ∥T (ϕ2)∥ ≈ ∥T (η2)∥ by Lemma 3.13. Then if
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the path η1 ends at the vertex w, η1γwϕ2 is an admissible path with W (η1γwϕ2) ≈
t1t2, so there exists some fixed r0 > 0 such that W (η1γwϕ2) ≥ r0t1t2. Thus get a
path ψ with W (ψ) ≈ r0 such that η1γwϕ2ψ ∈ FL,ζ(r0t1t2), and by Lemma 3.13

ρ(η1γwϕ2ψ)
q ≳q

(
∥T (γw)∥ ∥T (ψ)∥

)q · ρ(η1)qρ(η2)q.
But L is a finite graph (so there are only finitely many paths γw) and W (ψ) ≈ r0
(so there are only finitely many paths ψ). Thus Aq(t1)Aq(t2) ≲q Aq(r0t1t2) and the
limit exists for q < 0 by supermultiplicativity.

To see the final claim, suppose ζ ends at the vertex v and ζ ′ ends at the vertex
v′ where v, v′ are both vertices in L. Let ϕ be any path in L from v to v′. Let
Ψ: Ω∗

L(ζ
′) → Ω∗

L,ζ be given by Ψ(ζ ′η) = ζϕη, and note that

(5.1) Ψ(FL,ζ′(W (ζ ′)t)) ⊆ FL,ζ(W (ζϕ)t).

Now if ζ ′η ∈ Ω∗
L,ζ , by Lemma 3.13,

ρ(Ψ(ζ ′η)) = ∥T (ζϕη)∥ ≈ ∥T (η)∥ ≈ ∥T (ζ ′η)∥ = ρ(ζ ′η)

and combining this with (5.1) yields∑
η∈FL,ζ′ (W (ζ′)t)

ρ(η)q ≳q

∑
η∈FL,ζ(W (ζϕ)t)

ρ(η)q.

Since ζ , ζ ′, and ϕ are fixed , it follows that τL,ζ(q) ≥ τL,ζ′(q). The reverse inequality
follow by the same argument with the roles of ζ and ζ ′ swapped. □

Proposition 5.4. Suppose L is an essential loop class of G. Then if ∆ is any net interval
with neighbour set V(∆) ∈ V (L), with ν = µ|∆, we have

τL(q) = τν(q).

In particular, τL(q) = τµ(q) for any q ≥ 0.

Proof. This follows by the same argument as Proposition 5.2, observing that
if ζ ∈ Ω∗ is a path ending in an essential loop class L, then η ∈ Ω∗

L,ζ if and only if
η ∈ Ω∗ and ζ is a prefix of η.

That τL(q) = τµ(q) for q ≥ 0 follows by standard arguments (see, for example,
[FL09, Proposition 3.1]). □

Remark 5.5. In fact, using arguments similar to the proof of [Rut23, Theorem 4.5],
one can show that if L and L′ are essential classes, then τL = τL′ . In practice, with
the standard choices of iteration rules given in Example 3.7 and Example 3.8, there
will always be a unique essential class.

5.1.2. Loop class local dimensions. Given an infinite path γ = (en)
∞
n=1 ∈ Ω∞, recall

that γ|n = (e1, . . . , en) ∈ Ωn. We then define

dimloc(ρ, γ) = lim inf
n→∞

log ρ(γ|n)
logW (γ|n)
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with similar definitions for the (upper) local dimension. With this, we define

EL,ζ(α) = {γ ∈ Ω∞
L,ζ : dimloc(ρ, γ) = dimloc(ρ, γ) = α}.

Now let fL,ζ : R → R∪{−∞} be given by

fL,ζ(α) := dimH EL,ζ(α).

Note that EL,ζ(α) may be the empty set; by convention, we write dimH ∅ = −∞.
Following the theme for Lq-spectra, we have the following easy result.

Lemma 5.6. If L is a loop class and ζ, ζ ′ ∈ Ω∗ both end in L, then

fL,ζ(α) = fL,ζ′(α).

Proof. Let ζ end at the vertex v and ζ ′ end at the vertex v′, and let ϕ be a path
in L from v to v′. Now if ζ ′γ ∈ Ω∞

L (ζ ′), then ζϕγ ∈ Ω∞
L,ζ and by Lemma 3.13,

dimloc(ρ, ζ
′γ) = dimloc(ρ, ζϕγ).

Moreover, it is straightforward to verify that the map ζ ′γ 7→ ζϕγ is bi-Lipschitz
on its image, so that fL,ζ(α) ≥ fL,ζ′(α) for any α. The same argument yields the
converse inequality, as required. □

5.2. Multifractal formalism for irreducible loop classes. We maintain notation
from the previous section, recalling that ζ ∈ Ω∗ is a path ending at a vertex in the
loop class L.

In light of the results in the previous section, the following notions are well-
defined.

Definition 5.7. We define the loop class Lq-spectrum, denoted by τL(q), as τL(q) =
τL,ζ(q). Similarly, we define the loop class multifractal spectrum by fL(α) = fL,ζ(α).

For convenience, we write

αmin(L) = lim
q→∞

τL(q)

q
αmax(L) = lim

q→−∞

τL(q)

q
.(5.2)

The limits necessarily exist by concavity of τL(q), and a straightforward argument
shows that they are finite.

Our main result in this section is the following multifractal formalism, which
relates the multifractal spectrum with the Lq-spectrum on the loop class.

Theorem 5.8. Let L be an irreducible loop class in G. Then fL = τ ∗L.

In particular, fL is a concave function taking finite values precisely on the interval
[αmin(L), αmax(L)].

By definition, it suffices to show fL,ζ = τ ∗L,ζ for a path ζ ∈ Ω∗ ending at a
vertex in L. There are many ways to prove this result. One could use a weighted
version of the arguments in [Fen09], which are proven in a similar irreducible
matrix-product setting. Another option is to follow the arguments in [FL09].

We find it most efficient to use the following result, which is a simplified
“symbolic” version of [Fen12, Theorem 2.2].
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Proposition 5.9 ([Fen12]). Suppose for any q ∈ R such that the derivative τ ′L,ζ(q) = α
exists, there exist numbers b(q, k) and c(q, k) such that the following properties hold:

(i) We have limk→∞ b(q, k) = 0.
(ii) Suppose n ∈ N and η ∈ FL,ζ(2

−n). Then for any m ≥ c(q, k), there are distinct
paths η1, . . . , ηN ∈ FL,ζ(2

−n−m) such that η is a prefix of each ηi,

N ≥ 2m(τ∗L,ζ(α)−b(q,k)),

and

2−m(τ ′L,ζ(q)+1/k) ≤ ρ(ηi)

ρ(η)
≤ 2−m(τ ′L,ζ(q)−1/k).

Then fL,ζ(α) = τ ∗L,ζ(α) for each α ∈ R.

We first observe the following standard counting lemma, which is similar to [FL09,
Proposition 3.3], but the proof is easier.

Lemma 5.10. Suppose L is any loop class (not necessarily irreducible) and the derivative
τ ′L,ζ(q) = α exists. Then for any δ > 0, there is t0 = t0(δ, q) such that for all 0 < t < t0,
there is F ∗(t) ⊂ FL,ζ(t) such that

(i) #F ∗(t) ≥ t−τ∗L,ζ(α)+δ(|q|+1) and
(ii) tα+δ ≤ ρ(η) ≤ tα−δ for each η ∈ F ∗(t).

Proof. Write Aq(t) =
∑

η∈FL,ζ(t)
ρ(η)q. Since τ ′L,ζ(q) exists, get ϵ > 0 such that

(α− δ/2)ϵ ≤ |τL,ζ(q ± ϵ)− τL,ζ(q)| ≤ (α + δ/2)ϵ.

Let 0 < γ < min{ϵδ/6, δ/2, 1} and observe that γ depends only on δ and q. Then
since the limit defining τL,ζ exists by Lemma 5.3, get t0 depending on γ and q such
that for all 0 < t < t0,

tτL,ζ(q+z)+γ ≤ Aq+z(t) ≤ tτL,ζ(q+z)−γ

for each z ∈ {0,−ϵ, ϵ}. Next, write FL,ζ(t) = F−(t) ∪ F ∗(t) ∪ F+(t) where

F−(t) = {η ∈ FL,ζ(t) : ρ(η) ≤ tα+δ} F+(t) = {η ∈ FL,ζ(t) : ρ(η) ≥ tα−δ}

and F ∗(t) = FL,ζ(t) \ (F−(t) ∪ F+(t)). By definition, (ii) holds for η ∈ F ∗(t).
Combining the above inequalities gives that∑

η∈F−(t)

ρ(η)q ≤ Aq+ϵ(t)t
−ϵ(α−δ) ≤ tτL,ζ(q)+ϵδ/2−γ

with the analogous inequality for F+(t). Then since γ, t ∈ (0, 1) and γ < ϵδ/6,∑
η∈F ∗(t)

ρ(η)q ≥ tτL,ζ(q)+γ − 2tτL,ζ(q)+ϵδ/2−γ ≥ tτL,ζ(q)+2γ(t−γ − 2) ≥ tτL,ζ(q)+2γ.

But now for each η ∈ F ∗(t), we have ρ(η)q ≤ max{t(α+δ)q, t(α−δ)q} = tαq−δ|q| so that

#F ∗(t) ≥ t−αq+δ|q|
∑

η∈F ∗(t)

ρ(η)q ≥ t−τ∗L,ζ(α)+δ|q|+2γ ≥ t−τ∗L(α)+δ(|q|+1)

since γ < δ/2, giving (i). □
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Proof (of Theorem 5.8). Let q ∈ R with τ ′L,ζ(q) = α, n ∈ N and η ∈ FL,ζ(2
−n).

First suppose we are given some large m ∈ N and a path ϕ ∈ FL,ζ(2
−m). We

construct a path Ψ(ϕ) as follows. Write ϕ = ζψ. By the irreducibility assumption,
there is a path γ ∈ H such that η0 = ηγψ is an admissible path and by Lemma 3.13

(5.3) ρ(η0) ≈ ρ(η) ∥T (γ)∥ ∥T (ψ)∥ ≈ ρ(η)ρ(ϕ).

Since W (ηγ) ≈ 2−n and W (ϕ) ≈ 2−m, we have W (η0) ≥ 2−n−m−m′ for some m′

depending only on the (fixed) choice of ζ . Again by the irreducibility assumption,
we can thus obtain Ψ(ϕ) ∈ FL,ζ(2

−n−m−m′
) such that η0 is a prefix of Ψ(ϕ) and

ρ(Ψ(ϕ)) ≈ ρ(η0). Let C be a fixed constant such that C−1ρ(ϕ) ≤ ρ(Ψ(ϕ))/ρ(η) ≤
Cρ(ϕ).

Now by Lemma 5.10 with constant δ = 1/2k such that for all m0 ≥ c0(q, k)

there are paths ϕ1, . . . , ϕN ∈ FL,ζ(2
−m0) such that N ≥ 2m0(τ∗L,ϕ(α)−(|q|+1)/2k) and

2−m0(α+1/2k) ≤ ρ(ϕi) ≤ 2−m0(α−1/2k). Now with m = m0 +m′ and ηi = Ψ(ϕi), we
observe that η1, . . . , ηN ∈ FL,ζ(2

−n−m) and

N ≥ 2m0(τ∗L,ϕ(α)−(|q|+1)/2k ≥ 2m(τ∗L,ϕ(α)−(|q|+1)/k)

and

ρ(ηi)

ρ(η)
≤ Cρ(ϕi) ≤ C2−m0(α−1/2k) ≤ 2−m(α−1/k)

with a similar lower bound, for all m ≥ c0(q, k) +m′ sufficiently large depending
only on fixed quantities. Thus the conditions for Proposition 5.9 are satisfied,
giving the desired result. □

5.3. Regular points in level sets of local dimensions. As before, we fix a path
ζ ∈ Ω∗ ending at a vertex in the loop class L.

Recall that

EL,ζ(α) = {γ ∈ Ω∞
L,ζ : dimloc(ρ, γ) = dimloc(ρ, γ) = α}.

We wish to show that the set EL,ζ(α) can be approximated (in the sense of dimen-
sions) by sets of points which have particularly nice properties.

Definition 5.11. Let ξ be a finite path (not necessarily rooted) in G. We say that
a path γ = (en)

∞
n=1 ∈ Ω∞ is ξ-regular if there exists a monotonically increasing

sequence (nj)
∞
j=1 ⊂ N such that ξ is a prefix of (enj

, enj+1, . . .) for each j and

lim
j→∞

nj+1

nj

= 1.

This will be of key importance in §6. The proof of the following result is very
similar to [Fen09, Proposition 3.2], so we are somewhat terse with details. The
irreducibility hypothesis is critical in order to obtain this result.
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Theorem 5.12. Suppose L is an irreducible loop class and ζ ∈ Ω∗ a path ending at a
vertex v in L. Then for any α ∈ [αmin(L), αmax(L)] and finite path ξ contained in L
beginning at the vertex v, there exists ∅ ≠ Γ = Γ(ξ) ⊂ EL,ζ(α) such that

dimH Γ = dimH EL,ζ(α) = fL(α)

and Γ is composed only of ξ-regular points.

Proof. If L is simple, this result is immediate.
Otherwise we assume L is not simple. All cylinders in the proof are taken

relative to Ω∞
L,ζ . Set

F (α; t, ϵ) :=
{
η ∈ FL,ζ(t) : t

α+ϵ ≤ ρ(η) ≤ tα−ϵ
}

G(α; s, ϵ) :=
⋂

0<t≤s

⋃
η∈F (α;t,ϵ)

[η].

Of course, if γ ∈ EL,ζ(α), for any ϵ > 0, γ ∈ G(α; t, ϵ) for all t sufficiently small
(depending on ϵ) and thus

EL,ζ(α) ⊆
⋃
s>0

G(α; s, ϵ).

Since each cylinder [η] where η ∈ F (α; t, ϵ) has diameter W (η) ≈ t, for any s > 0
and ϵ > 0,

dimH G(α; s, ϵ) ≤ dimBG(α; s, ϵ) ≤ lim inf
t→0

log#F (α; t, ϵ)

− log t
.

This holds for any ϵ > 0. Thus by countable stability of the Hausdorff dimension,

(5.4) dimH EL,ζ(α) ≤ lim inf
ϵ→0

lim inf
t→0

log#F (α; t, ϵ)

− log t
.

We now turn to the construction of the set Γ. For the remainder of this proof,
unless otherwise stated, all implicit constants may depend on the (fixed) paths
ζ and ξ. Let δ > 0 be arbitrary. By (5.4), there are strictly monotonic sequences
(tj)

∞
j=1 ⊂ (0, 1) and (ϵj)

∞
j=1 both tending to 0 such that

(5.5)
log#F (α; tj, ϵj)

− log tj
> dimH EL,ζ(α)− δ

for each j ∈ N. Define a sequence {t∗j}∞j=1 by

t1, . . . , t1︸ ︷︷ ︸
N1

, t2, . . . , t2︸ ︷︷ ︸
N2

, . . . , ti, . . . , ti︸ ︷︷ ︸
Ni

, . . .

where Nj is defined recursively by N1 = 1 and, for j ≥ 2,

Nj = 2− log tj+1+Nj−1 .
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For each i, let Ai denote the set of indices j ∈ N where t∗j = ti. Set ϵ∗j = ϵi when
t∗j = ti.

Since there are only finitely many vertices in L and finitely many possible
dimensions of transition matrices, by the pigeonhole principle, for each j, there
exists an index (mj, nj) and a subset G∗

j ⊂ F (α; t∗j , ϵ
∗
j) such that each path in Gj

begins and ends at the same vertex and #G∗
j ≳ #F (α; t∗j , ϵ

∗
j). Let η∗j = ηi when

t∗j = ti.
Recall that the path ξ begins at vertex v. There exist constants C,D > 0 such

that by repeatedly applying irreducibility of L, for each path η∗j ∈ G∗
j , there exist

paths ϕ(η∗j ), ψ(η∗j ) ∈ H such that the following two conditions hold:
(i) the path θ(η∗j ) := ξϕ(η∗j )η

∗
jψ(η

∗
j ) is a cycle beginning and ending at vertex v,

and
(ii) for any γ = θ(η∗1) . . . θ(η

∗
k)η

′ where η′ is a prefix of θ(η∗k+1),

Dk

k∏
i=1

∥T (η∗i )∥ ≥ ∥T (γ)∥ ≥ Ck

k+1∏
i=1

∥T (η∗i )∥ .

Then let for n ∈ N

Gn =
{
[ζθ(η∗1) . . . θ(η

∗
n)] : (η

∗
1, . . . , η

∗
n) ∈

n∏
i=1

G∗
i

}
which is a nested sequence of families of cylinders, and set

Γδ =
∞⋂
n=1

⋃
I∈Gn

I.

A direct computation shows that Γδ ⊂ Σ(α).
We now show that dimH Γδ ≥ Λ(α) − δ. By [FLW02, Proposition 3.1] (the

technical assumptions are immediate to verify), dimH Γδ = lim infk→∞ ak where ak
satisfies ∑

(η∗1 ,...,η
∗
k)∈G1×···×Gk

W (η∗1 . . . η
∗
k)

ak = 1.

Let 1 ≤ j ≤ k and choose i such that j ∈ Ai. As ξ is fixed, W (θ(η∗j )) ≈ W (η∗j ) ≈ ti
and η∗j ∈ F (α; t∗j , ϵ

∗
j) so η∗j ∈ Ft∗j

(∆) = Fti(∆). Let r > 0 be such that W (η∗j ) ≥ rt∗j .
Thus since (t∗j) → 0 and #F (α; t∗j , ϵ

∗
j) → ∞,

dimH Γδ ≥ lim inf
k→∞

log
∏k

j=1 #G
∗
j

− log
∏k

j=1(rt
∗
j)

≥ lim inf
k→∞

−k + log
∏k

j=1#F (α; t
∗
j , ϵ

∗
j)

k − log
∏k

j=1 t
∗
j

= lim inf
k→∞

log
∏k

j=1 #F (α; t
∗
j , ϵ

∗
j)

− log
∏k

j=1 t
∗
j

.
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Now by definition of the Nj and (5.5), it follows that

dimH Γδ ≥ dimH EL,ζ(α)− δ

as claimed. Take Γ =
⋃∞

n=1 Γ2−n , and the result follows. □

6. MULTIFRACTAL ANALYSIS OF SELF-SIMILAR MEASURES

We continue to use the notation of the previous section. We fix a WIFS (Si, pi)i∈I
with self-similar measure µ. In particular, we assume that Φ is an iteration rule
with corresponding finite transition graph G, as described in §3.4.

6.1. Local dimensions and regular points. Intuitively, the multifractal analysis of
self-similar sets satisfying the finite neighbour condition is related to the multifrac-
tal analysis results for loop classes from the preceding section. However, the exact
relationship is somewhat more complicated to establish: while the local dimension
of ρ at a path γ depends only on the single sequence of edges determining γ, the
local dimension of µ at a point x ∈ K can also depend on net intervals which
are adjacent to net intervals containing x. This happens when x is the shared
boundary point of two distinct net intervals, but it can also happen when x is an
interior point approximated very well by boundary points (so that balls B(x, r)
overlap significantly with neighbouring net intervals, for infinitely many values
of r).

In order to better understand this adjacency structure, we introduce the notion
of the approximation sequence of an interior point, as well as the set of regular
points KR ⊆ K. Let x ∈ K be an interior point, which we recall means that
π−1(x) = {γ} is a single (infinite) path. Let (∆i)

∞
i=0 with ∆0 = [0, 1] and each ∆i+1

a child of ∆i denote the sequence of net intervals corresponding to γ. Of course,
∆n = π(γ|n). Given some i and [a, b] = ∆i+1 ⊆ ∆i = [c, d], by the reductions
described in Remark 3.6, exactly one of c = a < b < d, c < a < b = d, or
c < a < b < d must hold. Moreover, since x is an interior point, it cannot hold
that all ∆k share a common left (resp. right) endpoint for all sufficiently large k
where the left (resp. right) endpoint is also the right (resp. left) endpoint of some
adjacent net interval. In particular, there exists a monotonically increasing infinite
sequence (nj)

∞
j=1 such that there exists a neighbourhood of ∆nj+2 in K which is

contained entirely in ∆nj
.

We now make the following definition:

Definition 6.1. Given an interior point x ∈ K, we call the sequence (nj)
∞
j=1 de-

scribed above the approximation sequence of x. We then say that x is regular if its
approximation sequence satisfies

lim
j→∞

nj+1

nj

= 1.

We denote the set of regular points in K by KR.

The intuition is that interior points in K which are approximated very well by
boundary points are contained in long sequences of net intervals which share left
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endpoints or right endpoints, so that regular points are those which are poorly
approximated by boundary points.

The main point of the approximation sequence is that x is bounded uniformly
away from the neighbouring net intervals of ∆nj

= π(γ|nj) for each j ∈ N. To be
precise, we have the following lemma.

Lemma 6.2. Let x be an interior point with approximation sequence (nj)
∞
j=1. There exists

some R > 0 depending only on the IFS and m = m(R) ∈ N such that, for any j ∈ N,

∆nj+m ⊆ B(x,R · diam(∆nj
)) ∩K ⊆ ∆nj

.

Proof. Since there is a neighbourhood of ∆nj+2 in K contained entirely in ∆nj
,

either ∆nj+2 ⊆ ∆◦
nj

or ∆nj+2 shares an endpoint with ∆nj
but there is no other

adjacent net interval in Pnj
. We only treat the first case; the second follows by

similar arguments. We recall by Proposition 3.5 that the position index q(∆i+1,∆i)
depends only on the neighbour set of ∆i. Thus if we write ∆nj+2 = [a, b] and
∆nj

= [c, d] where a < c < d < b, there are only finitely many positive values for
(c− a)/(d− c) and (b− d)/(d− c). The existence of R follows.

Moreover, recall that W (e) = diam(∆i)/ diam(∆i+1) when ∆i+1 is the child of
∆i corresponding to the edge e. Therefore, with Wmin = min{W (e) : e ∈ E(G)}, it
suffices to take m such that Wm−2

min ≤ R. □

Using the approximation sequence, we can establish some basic relationships
between local dimensions and their loop class analogues. A similar version of the
following result was first proven in [HR22].

Proposition 6.3. Suppose x is an interior point with unique symbolic representation γ.
(i) We always have

dimloc(µ, x) ≤ dimloc(ρ, γ) ≤ dimloc(µ, x) ≤ dimloc(ρ, γ).

(ii) If dimloc(ρ, γ) exists, then dimloc(µ, x) = dimloc(ρ, γ).
(iii) If dimloc(µ, x) exists, then dimloc(ρ, γ) = dimloc(µ, x).

Proof. It suffices to show (i), since it is clear that (ii) and (iii) follow directly.
For each t > 0 let n(t) be minimal such that W (γ|n(t)) ≤ t. Then if ∆t =

π(γ|n(t)), we have ∆t ⊆ B(x, t) so that

dimloc(µ, x) = lim sup
t→0

log µ(B(x, t))

log t
≤ lim sup

t→0

log ρ(γ|n(t))
log t

= dimloc(ρ, γ).

Replacing the limit superior with the limit inferior, we also have that dimloc(µ, x) ≤
dimloc(ρ, γ).

To get the remaining bound, let x have approximation sequence (nk)
∞
k=1 and let

R,m be as in Lemma 6.2. We then have, since W (γ|(nk +m)) ≈ ρW (γ|nk),

dimloc(µ, x) = lim sup
t→0

log µ(B(x, t))

log t
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≥ lim sup
k→∞

log µ(B(x,R ·W (γ|nk)))

logR ·W (γ|nk)

≥ lim sup
k→∞

log ρ(γ|(nk +m))

logW (γ|(nk +m))

≥ dimloc(ρ, γ).

as required. □

When the local dimension exists, the content of the following lemma states
that we can extend the nice properties along the approximation sequence to net
intervals in similar levels. A similar statement holds when the loop class local
dimension exists.

Lemma 6.4. Suppose x is an interior point with symbolic representation γ. Let x have
approximation sequence (nj)

∞
j=1 and let (kj)∞j=1 ⊂ N satisfy limj→∞

kj
nj

= 0.
(i) Suppose dimloc(µ, x) exists. Then

lim
j→∞

log ρ(γ|nj − kj)

log ρ(γ|nj)
= 1.

(ii) Suppose dimloc(ρ, γ) exists. Then with m from Lemma 6.2,

lim
j→∞

log µ
(
B(x,W (γ|nj +m))

)
log µ

(
B(x,W (γ|nj +m+ kj))

) = 1

Proof. We first see (i). For each i let ∆i have symbolic representation γ|i, set
ti = diam(∆ni

), and let α = dimloc(µ, x). By Lemma 6.2, there exists some R > 0
and m ∈ N such that

(6.1) B(x,Rtj) ⊆ ∆nj
⊆ ∆nj−kj ⊆ B(x, cjtj)

where cj = W
−kj−1
min . But then since log cjtj ≈ nj − kj ,

lim
j→∞

(kj + 1) logWmin

log cjtj
= lim

j→∞

kj
nj − kj

= 0

so that

lim
j→∞

log µ(B(x, cjtj))

log tj
= lim

j→∞

log µ(B(x, cjtj))

(kj + 1) logWmin + log cjtj

= lim
j→∞

log µ(B(x, cjtj))

log cjtj
= α

Arguing similarly, we also have α = limj→∞
log µ(B(x,Rtj))

log tj
. Thus

lim
j→∞

log µ(B(x, cjtj))

log µ(B(x,Rtj))
= 1

and the result follows from (6.1).
The proof of (ii) follows similarly after observing that

∆nj
⊇ B(x,R ·W (γ|nj)) ⊇ B(x,W (γ|nj +m))

⊇ B(x,W (γ|nj +m+ kj)) ⊇ ∆nj+m+kj . □
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Finally, the situation is nicest when x ∈ KR is a regular point. Note that this
strengthens the usual observations in Proposition 6.3.

Corollary 6.5. Suppose x ∈ KR is a regular point with unique symbolic representation
γ eventually in the loop class L. If either dimloc(µ, x) exists or dimloc(ρ, γ) exists, then
they both exist and are equal.

Proof. We see this when dimloc(ρ, γ) = α exists; the proof when dimloc(µ, x)
exists is analogous. Set kj = nj+1 − nj . But then for all i sufficiently large,
nj +m ≤ i ≤ nj +m+ kj for some j. Then since x is a regular point, Lemma 6.4
applies with (kj)

∞
j=1 and

lim sup
i→∞

log µ
(
B(x,W (γ|i))

)
logW (γ|i)

≤ lim sup
j→∞

log µ
(
B
(
x,W (γ|(nj +m))

))
logW (γ|(nj +m))

≤ lim sup
j→∞

log ρ(γ|nj)

logW (γ|nj)
= α.

The lower bound follows similarly, so that dimloc(µ, x) = α. □

6.2. The upper bound for the multifractal spectrum. Set

Eµ(α;L) = {x ∈ K int
L : dimloc(µ, x) = α} = K int

L ∩ Eµ(α).

Given a path ζ ∈ Ω∗ ending at a vertex in L, one can think of Eµ(α;L) ∩ π(ζ)
as an analogue of the set EL,ζ(α) from §5.1. In Theorem 5.8 the upper bound
fL(α) ≤ τ ∗L(α) always holds, with no assumptions on L. Here, we show that τ ∗L(α)
is also an upper bound for the Hausdorff dimension of the level sets Eµ(α;L).

Compare part (i) in Theorem 6.6 with [HR22, Proposition 4.4]. Note that our
definition of αmin(L) and αmax(L) (as defined in (5.2)) is formally different from
that paper. Regardless, one can show that they coincide when L is an irreducible
loop class.

Theorem 6.6. Let (Si, pi)i∈I be a WIFS satisfying the finite neighbour condition with
associated self-similar measure µ. Let L be a loop class. Then

(i) dimloc(µ, x) ∈ [αmin(L), αmax(L)] for any x ∈ K int
L for which the local dimension

exists, and
(ii) dimH Eµ(α;L) ≤ τ ∗L(α) for any α ∈ R.

We first recall some notation from §5.2. Fix some ∆0 ∈ F such that V(∆0) ∈ V (L).
Let ∆0 have symbolic representation ζ0 and set

Aq(t) =
∑

η∈FL,ζ0
(t)

ρ(η)q.

so that

τL(q) = τL,ζ0(q) = lim
t→0

logAq(t)

log t
.
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The projection π taking paths in Ω∗ to net intervals in P restricts to the map

π : Ω∗
L,ζ0 → {∆ ∈ P : ∆ ⊆ ∆0,V(∆) ∈ V (L)}.

We recall that ρ = µ ◦ π. As defined in Theorem 5.12, we also set

F (α; t, ϵ) :=
{
η ∈ FL,ζ0(t) : t

α+ϵ ≤ ρ(η) ≤ tα−ϵ
}
.

We first prove the following standard counting result on the size of the sets
F (α; t, ϵ). This is essentially the same as, for example, [LN99, Lemma 4.1].

Lemma 6.7. Let α ≥ 0 be arbitrary and q ∈ ∂τ ∗L(α). Then there exists some r > 0 such
that for all 0 < t < r,

#F (α; t, ϵ) ≤ t−τ∗L(α)−(1+|q|)ϵ.

Proof. We prove this for q < 0, but the case q ≥ 0 follows identically. To do this,
we bound Aq(t) in two ways for t sufficiently small. On one hand,

Aq(t) ≥
∑

η∈F (α;t,ϵ)

ρ(η)q ≥ tq(α−ϵ)#F (α; t, ϵ).

On the other hand, for t sufficiently small (depending on ϵ and ∆0), Aq(t) ≤ tτL(q)−ϵ.
Combining these observations, we have

#F (α; t, ϵ) ≤ tτL(q)−ϵt−q(α−ϵ) = t−τ∗L(α)−(1−q)ϵ

since q ∈ ∂τ ∗L(α) so that τ ∗L(α) = αq − τL(q). □

We now begin the main proof.

Proof (of Theorem 6.6). To see (i), suppose x ∈ K int
L is arbitrary with unique

symbolic representation γ = (en)
∞
n=1. Let ζ ∈ Ω∗ be a prefix of γ ending in L.

By Proposition 6.3, dimloc(µ, x) = dimloc(ρ, γ), so there exists an increasing
sequence (nj)

∞
j=1 such that

dimloc(ρ, x) = lim
j→∞

log ρ(γ|nj)

logW (γ|nj)
.

With tj = W (γ|nj), since γ|nj ∈ Ftj , we have for j sufficiently large that γ|nj ∈ Ω∗
L,ζ

so that

log
∑

η∈FL,ζ(tj)
ρ(η)q

log tj
≤ q

log ρ(γ|nj)

log tj
.

Taking the limit infimum as j goes to infinity yields

τL(q) = τL,ζ(q) ≤ q dimloc(µ, x)

where q ∈ R is arbitrary. It follows that dimloc(µ, x) ∈ [αmin(L), αmax(L)].
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We now see (ii). Since

K int
L =

⋃
{∆∈P:V(∆)∈V (L)}

∆ ∩K int
L ,

it suffices to show that dimH E0 ≤ τ ∗L(α) where

E0 := Eµ(α;L) ∩∆0

and ∆0 = π(ζ0) is a fixed net interval with neighbour set in L. We fix notation as
above; in particular, we recall that ζ0 is the symbolic representation of ∆0.

Again we assume q < 0; the case q ≥ 0 follows similarly. Fix ϵ > 0 and set

Gn = {π(η) : η ∈ F (α; 2−n, ϵ)}

where π(η) is the net interval with symbolic representation η. By Lemma 6.7, there
exists N = N(ϵ) such that for all n ≥ N ,

#Gn = #F (α; 2−n, ϵ) ≤ 2n(τ
∗
L(α)+(1−q)ϵ).

Let G =
⋃∞

n=N(ϵ) Gn.
We first see that G is a Vitali cover for E0. Let x ∈ E0 be arbitrary. Since x = π(γ)

is an interior point, it has an approximation sequence (nj)
∞
j=1. Let m be such that

any path η in G of length at least m has W (η) ≤ 1/3. Such a constant exists since
there are only finitely many possible edge weights W (e) ∈ (0, 1). The choice of m
ensures that there exists some mj ∈ N such that W (γ|nj) ≤ 2−mj ≤ W (γ|nj −m).
Since dimloc(µ, x) exists and R ·W (γ|nj) ≈ 2−mj where R > 0 is a fixed constant,

(6.2) lim
j→∞

log µ(B(x,R ·W (γ|nj)))

log µ(B(x, 2−mj))
= 1.

Now, by Lemma 6.2 and Lemma 6.4 applied to the constant sequence kj = m,
we have for j sufficiently large and 0 ≤ i ≤ m arbitrary

µ(B(x,R ·W (γ|nj))) ≤ ρ(γ|nj) ≤ ρ(γ|nj − i) ≤ ρ(γ|nj)
1−ϵ.

Moreover, we always have

B(x, 2−mj) ⊇ B(x,W (γ|nj)) ⊇ π(γ|nj)

so that ρ(γ|nj) ≤ µ(B(x, 2−mj)). Thus applying (6.2), for all j sufficiently small,

µ(B(x, 2−mj))1+ϵ ≤ ρ(γ|nj − i) ≤ ρ(γ|nj)
1−ϵ ≤ µ(B(x, 2−mj))1−ϵ.

Finally, since dimloc(µ, x) = α, for all j sufficiently small and 0 ≤ i ≤ m with
γ|(nj − i) ∈ FL,ζ0(2

−mj),

(2−mj)α+ϵ ≤ ρ(γ|nj − i) ≤ (2−mj)α−ϵ.
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Thus π(γ|(nj − i)) ∈ G. Since this is true for all j sufficiently large, we may take
diam(γ|(nj − i)) arbitrarily small, so G is indeed a Vitali cover for E0.

Now suppose {Ei}∞i=1 is any disjoint subcollection of G: then for s = τ ∗L(α) +
2(1− q)ϵ,

∞∑
i=1

diam(Ei)
s =

∞∑
n=N(ϵ)

∑
∆∈Gn

diam(∆)s ≤
∞∑

n=N(ϵ)

2−ns#Gn

≤
∞∑

n=N(ϵ)

(
2−τ∗L(α)−2(1−q)ϵ)2τ

∗
L(α)+(1−q)ϵ

)n
=

∞∑
n=N(ϵ)

(2−(1−q)ϵ)n <∞.

Thus by the Vitali covering theorem for Hausdorff measure, we must have

Hs(E0) ≤
∞∑
i=1

diam(Ei)
s <∞

so that dimH E0 ≤ τ ∗L(α) + 2(1− q)ϵ. Since ϵ > 0 was arbitrary, the result follows.□

6.3. Irreducibility and the lower bound for the multifractal spectrum. We recall
that the notion of irreducibility was introduced in §4.2. Moreover, recall that a point
x ∈ KL is said to be an interior point of KL if it only has symbolic representations
that are eventually in L, and the set of such points is denoted by K int

L .
We now introduce the notion of an interior path, and use this to relate the

notions of ξ-regularity in Ω∞ (introduced in Definition 5.11) with regular points in
K (as defined in Definition 6.1).

Definition 6.8. We say ξ is an interior path if whenever (∆i)
m
i=0 is a sequence of net

intervals where ∆i+1 is a child of ∆i corresponding to ξ, there is a neighbourhood
of ∆m in K which is contained entirely in ∆0.

Recall that Ω∞ is the set of rooted infinite paths in G and KR is the set of regular
points.

Lemma 6.9. Let ξ be an interior path in a loop class L, and let γ ∈ Ω∞
L be ξ-regular.

Then for any path η such that ηγ ∈ Ω∞, π(ηγ) ∈ K int
L ∩KR.

Proof. This is a direct application of the definitions, noting that if γ = (en)
∞
n=1, η

has length m1, ξ has length m2, and ξ appears at some position n, then some j with
n+m1 ≤ j ≤ n+m1 +m2 is a point in the approximation sequence of π(ηγ). □

Recall that

Eµ(α;L) = {x ∈ K int
L : dimloc(µ, x) = α}.

We will also need the following result, which follows by a similar argument
to [Rut23, Proposition 3.15] or (in a somewhat more specialized case) [HHN18,
Proposition 2.7].
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Lemma 6.10. Suppose L is a simple loop class and x ∈ KL. If x is an interior point with
π−1(x) = {γ}, then

dimloc(µ, x) = dimloc(ρ, γ).

Otherwise x ∈ K is a boundary point with π−1(x) = {γ1, γ2}, and

dimloc(µ, x) = min{dimloc(ρ, γ1), dimloc(ρ, γ2)}.

We now show here that the regular points in a non-simple KL are abundant.

Theorem 6.11. Let L be an irreducible loop class which is not simple, or simple and
contains an interior point. Then Eµ(α;L) ̸= ∅ if and only if fL(α) ≥ 0 if and only if
α ∈ [αmin(L), αmax(L)]. Moreover,

dimH Eµ(α;L) ∩KR ≥ fL(α)

for all α.

Proof. If L is simple, since L contains interior points, the result follows directly
from Lemma 6.10.

Otherwise, L is not simple, so there exists some vertex v ∈ V (L) and an interior
path ξ ∈ Ω∗(L, v). Let ζ1 ∈ Ω∗ be any path ending at a vertex in L. By Theorem 5.12,
get Γ ⊆ EL,ζ1(α) such that dimH Γ ≥ dimH EL,ζ1(α) and each γ ∈ Γ is ξ-regular
with dimloc(ρ, γ) = α.

By Lemma 6.9 and Corollary 6.5, π(Γ) ⊆ E(L, α)∩KR. In particular, this proves
Eµ(L;α) ∩KR is non-empty whenever fL(α) ≥ 0, and

dimH Eµ(L;α) ∩KR ≥ dimH π(Γ).

We also know by Theorem 5.8 that α ∈ [αmin(L), αmax(L)] if and only if fL(α) ≥ 0.
The remaining implication follows from Theorem 6.6.

It remains to prove that dimH π(Γ) = dimH(Γ). We recall from Lemma 5.1 that π
is Lipschitz, so dimH π(Γ) ≤ dimH Γ. Conversely, let ∆ ∈ P be the net interval with
symbolic representation ζ1 and let {Ui}∞i=1 be some ϵ-cover of π(Γ) ⊆ ∆. Without
loss of generality, we may assume Ui ⊆ ∆ for each i ∈ N. Let ti = diamUi < ϵ and
let bi denote the maximal number of net intervals of generation ti which intersect
Ui. Note that bi ≤ 1/[a] + 1 where the diameter of any generation t net interval is
at least at. These net intervals have symbolic representations {ζ1ηij : 1 ≤ j ≤ bi},
and the corresponding cylinders C = {[ηij] : i ∈ N, 1 ≤ j ≤ bi} cover Γ and have
diameter W (ηij) ≈ ti. Thus there exists some A > 0 such that C forms an Aϵ-cover
of Γ.

It follows that for a suitable constant c,

∞∑
i=1

bi∑
j=1

(diam([ηij]))
s ≤ cAs

∑
i

(diam(Ui))
s

and therefore for each ϵ > 0,

Hs
ϵA(Γ) ≤ cAsHs

ϵ (π(Γ)).
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Letting ϵ→ 0, we deduce thatHs(π(Γ)) ≥ (cAs)−1Hs(Γ). This implies dimH π(Γ) ≥
dimH(Γ), so that dimH π(Γ) = dimH Γ. □

If L is an irreducible non-simple loop class, then necessarily L contains an interior
path. The only additional case occurs when L is a simple loop class without an
interior path. In this case, it may hold that every x ∈ KL has two symbolic repre-
sentations, and the local dimension is always given by the symbolic representation
of the adjacent path not eventually in L. This motivates the following definition.

Definition 6.12. We say that a loop class L is non-degenerate if L is not simple, or
if L is simple and there exists some x ∈ K such that

dimloc(µ, x) = dimloc(ρ, γ)

for some γ ∈ Ω∞
L . We say that L is degenerate otherwise.

Corollary 6.13. Suppose every loop class in G is irreducible, with non-degenerate loop
classes L1, . . . ,Lm. Then the multifractal spectrum of µ is given by

fµ(α) = max{fL1(α), . . . , fLm(α)}

for each α ∈ R.

Proof. Combining the general upper bound from Theorem 6.6 and the lower
bound Theorem 6.11 using irreducibility, it follows for each 1 ≤ i ≤ m that

dimH Eµ(α;Li) = fLi
(α).

Of course,

m⋃
i=1

Eµ(α;Li) ⊇ Eµ(α) ∩K int.

Moreover, if the local dimension exists at x /∈ K int, by Lemma 6.10, dimloc(µ, x) =
dimloc(ρ, γ) for some infinite path γ ∈ Ω∞

L . Then this L is non-degenerate, and
K \K int is countable and hence has Hausdorff dimension 0. Thus

fµ(α) = dimH Eµ(α) = dimH Eµ(α) ∩K int

as required. □

6.4. Decomposability and bounds for the Lq-spectrum. Recall that the notion of
decomposability was introduced in §4.3.

Similarly to how we bounded the multifractal formalism fµ in terms of the
functions fL for loop classes L, in this section, we establish bounds for the Lq-
spectrum τµ in terms of the functions τL. We first note the following general upper
bound.
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Lemma 6.14. Let µ be a self-similar measure satisfying the Φ-FNC, with loop classes
L1, . . . ,Lm. Then

τµ(q) ≤ lim sup
t→0

log sup
∑

i µ(B(xi, t))
q

log t
≤ min{τL1(q), . . . , τLm(q)}

where the supremum is taken over all centred packings {B(xi, t)}i of K = suppµ.

Proof. The first inequality follows by definition.
To see the second inequality, let L be an arbitrary loop class. Let ζ ∈ Ω∗ be a

path ending at a vertex in L. Then by definition∑
η∈F(t)

ρ(η)q ≥
∑

η∈FL,ζ(t)

ρ(η)q.

Now the same proof as Proposition 5.2 shows that

lim sup
t→0

log sup
∑

i µ(B(xi, t))
q

log t
= lim sup

t→0

log
∑

η∈F(t) ρ(η)
q

log t
≤ τL,ζ(q) = τL(q)

by existence of the limit defining τL,ζ given in Lemma 5.3. But L was arbitrary, so
the result follows. □

We now have the following result establishing our lower bound as well. Note the
similarity of this result and proof to [HHS21b, Theorem 5.2].

Theorem 6.15. Let µ be a self-similar satisfying the Φ-FNC with decomposable transition
graph G. Let G have loop classes L1, . . . ,Lm. Then

τµ(q) = min{τL1(q), . . . , τLm(q)}.

for any q ∈ R. Moreover, the limit defining τµ(q) exists for any q ∈ R.

Proof. For each loop class Li, fix a path ζi ∈ Ω∗ ending at a vertex vi ∈ V (Li).
Now for each vertex w ∈ V (Li), let γi,w be a path in Li from vi to w. Let s0 > 0 be
such that

s
1/m
0 ≤ min

i
min
w∈Li

W (ζiγi,w).

Similarly, since there are only finitely many initial and transition paths, there is
s1 > 0 such that if η ∈ F(t) has decomposition (λ1, . . . , λn), then

s1t ≥ W (λ1) · · ·W (λn).

Next, define sets of path weights

Λi := {W (η) : η ∈ FLi,ζi}
Λ(t) := {(t1, . . . , tm) ∈ Λ1 × · · · × Λm : s1t ≥ t1 · · · tm ≥ s0t}.
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Since there are only finitely many edge weights W (e) for e ∈ E(G), it follows that
there is some k ∈ N such that #Λ(t) ≤ (− log t)k for all t sufficiently small.

We now construct a function

(6.3) Ψ : F(t) →
⋃

(t1,...,tm)∈Λ(t)

FL1,ζ1(t1)× · · · × FLm,ζm(tm)

as follows. Suppose the path η ∈ F(t) has decomposition (λ1, . . . , λm). Then if the
path λi begins at vertex wi ∈ V (Li), we set

Ψ(η) = (ζ1γ1,w1λ1, . . . , ζmγm,wmλm).

Note that Ψ is well-defined by choice of s0 and the definition of Λ(t).
Since there are only finitely many transition paths, there is a uniform bound on

the number of paths with the same decomposition. Moreover, since there are only
finitely many paths γi,wi

, for a fixed path η, the number of distinct decompositions
of paths η′ with Ψ(η) = Ψ(η′) is also uniformly bounded. Thus, even though Ψ
need not be injective, there is some constant N ∈ N (independent of t) such that
each fibre of Ψ has cardinality at most N .

Fix

θ(q) := min{τL1(q), . . . , τLm(q)}.

By Lemma 5.3, for any ϵ > 0 and all t sufficiently small,∑
ηi∈FLi,ζi

(t)

∥T (ηi)∥q ≤ tτLi
(q)−ϵ ≤ tθ(q)−ϵ.

Moreover, by the decomposability assumption and Lemma 3.13, it follows that if
Ψ(η) = (η1, . . . , ηm), then

∥T (η)∥q ≲q ∥T (η1)∥q · · · ∥T (ηm)∥q .

Thus for all t sufficiently small,

∑
η∈F(t)

ρ(η)q ≲q

∑
(t1,...,tm)∈Λ(t)

 ∑
η1∈FL1,ζ1

(t1)

· · ·
∑

ηm∈FLm,ζm (tm)

∥T (η1)∥q · · · ∥T (ηm)∥q


=
∑

(t1,...,tm)∈Λ(t)

 ∑
η1∈FL1,ζ1

(t1)

∥T (η1)∥q
 · · ·

 ∑
ηm∈FLm,ζm (tm)

∥T (ηm)∥q


≲q

∑
(t1,...,tm)∈Λ(t)

t
θ(q)−ϵ
1 · · · tθ(q)−ϵ

m

≲q #Λ(t)tθ(q)−ϵ.

Since #Λ(t) grows polynomially in log t, it follows by Proposition 5.2 that

τµ(q) ≥ lim inf
t→0

log
∑

η∈F(t) ρ(η)
q

log t
≥ θ(q)− ϵ.
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But ϵ > 0 was arbitrary, and combining this with Lemma 6.14 yields the desired
result. □

Remark 6.16. In fact, since for any path η with decomposition (λ1, . . . , λm), we
have

∥T (η)∥ ≲ ∥T (λ1)∥ · · · ∥T (λm)∥

with no assumptions on the transition graph G, the same proof as above shows
that

τL(q) = τµ(q) = min{τL1(q), . . . , τLm(q)}

by Proposition 5.4 for q ≥ 0 without the decomposability assumption.

Remark 6.17. Unlike the results for the multifractal formalism in Corollary 6.13,
we note that Lemma 6.14 and Theorem 6.15 write the Lq-spectrum in terms of all
loop classes, and not just the non-degenerate loop classes.

7. APPLICATIONS AND EXAMPLES

Throughout this section, naturally, (Si, pi)i∈I is a WIFS satisfying the finite neigh-
bour condition with respect to the iteration rule Φ, and has transition graph G and
associated self-similar measure µ.

7.1. Consequences of the main results. Our first application, which follows
essentially from the bounds in the previous section along with standard properties
of concave functions, describes precisely when the multifractal formalism holds.

Corollary 7.1. Suppose G is irreducible and decomposable, and suppose the maximal loop
classes L1, . . . ,Lm are non-degenerate. Then µ satisfies the multifractal formalism at α if
and only if α ∈ ∂τLi

(q) for some 1 ≤ i ≤ m and q ∈ R with min{τL1(q), . . . , τLm(q)} =
τLi

(q). In particular, if the derivative α = τ ′µ(q) exists at some q ∈ R, then µ satisfies the
multifractal formalism at α.

Proof. Since G is decomposable, τµ = min{τL1(q), . . . , τLm} by Theorem 6.15.
First suppose fµ(α) = τ ∗µ(α), so there is some Li such that

τ ∗µ(α) = fLi
(α) = τ ∗Li

(α)

by Corollary 6.13 and Theorem 5.8. Since τ ∗µ(α) = τ ∗Li
(α), there are q1, q2 ∈ R such

that α ∈ ∂τLi
(q1) ∩ ∂τµ(q2): therefore, τLi

(q1)− τµ(q2) = α(q1 − q2). Without loss of
generality, suppose q1 < q2. Since τµ(q1) ≤ τLi

(q1) and τLi
(q1) ≤ τLi

(q2)− (q2− q1)α
by concavity, this can only happen when τLi

(q1) = τµ(q1) and α ∈ ∂τLi
(q1), as

required.
Conversely, suppose α ∈ ∂τLi

(q) where τLi
(q) = τµ(q). Since τµ ≤ τLi

, it follows
that α ∈ ∂τµ(q) so that τ ∗µ(α) = τ ∗Li

(α). But τLi
(q) ≤ min{τL1(q), . . . , τLm(q)} by
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assumption so

τ ∗µ(α) = τ ∗Li
(α) = max{τ ∗L1

(α), . . . , τ ∗Lm
(α)} = fµ(α)

by Corollary 6.13.
If τ ′µ(q) exists, it follows immediately that α ∈ ∂τLi

(q) for any i such that
τLi

(q) = min{τL1(q), . . . , τLm(q)}. □

Our next result was obtained in [Rut23] under the weak separation condition, but
we obtain it here (in a slightly more specialized case) as a direct corollary of the
prior results.

Corollary 7.2. Suppose G has exactly one loop class L. Then µ satisfies the multifractal
formalism.

Proof. Since L is the only loop class, it must be essential, so it is irreducible by
Lemma 4.6. Since there is only one loop class and therefore no transition paths, the
decomposability condition holds vacuously, and by Theorem 6.15, τµ = τL. Thus
the result follows from the multifractal formalism for irreducible graph-directed
systems proven in Theorem 5.8. □

We now prove the following result, which completely characterizes the validity of
the multifractal formalism in terms of a qualitative property of the multifractal
spectrum.

Corollary 7.3. Suppose the transition graph G is irreducible and decomposable, and every
loop class is non-degenerate. Then µ satisfies the multifractal formalism if and only if fµ is
a concave function.

Proof. If µ satisfies the multifractal formalism, then fµ = τ ∗µ where τ ∗µ is a
concave function.

Conversely, suppose fµ is a concave function. We have by Theorem 6.15 and
Corollary 6.13 that

(7.1) fµ = max{fL1 , . . . , fLm} and τµ = min{τL1 , . . . , τLm}.

where G has loop classes L1, . . . ,Lm.
Now let α0 ∈ R be arbitrary. Let q be the unique value such that α0 ∈ ∂τµ(q) =

[α1, α2]. If α1 = α2, τµ is differentiable at q and we are done by Corollary 7.1.
Otherwise, by (7.1), there exist two loop classes, say L1 and L2, such that α1 ∈
∂τL1(q), α2 ∈ ∂τL2(q) and τL1(q) = τL2(q) = τµ(q). Observe that τ ∗µ(α) = αq − τµ(q)
for any α ∈ [α1, α2]. Moreover, since concave conjugation is order reversing, by
(7.1), fµ(α1) = fL1(α1) = τ ∗µ(α1) and fµ(α2) = fL2(α2) = τ ∗µ(α2). But fµ(α0) ≤
τ ∗µ(α0) and fµ is concave by assumption, forcing τ ∗µ(α0) = fµ(α0) as required. □

Remark 7.4. For IFS of the form (λx + di)i∈I satisfying the finite type condition,
the following version of the reverse implication was first observed in [Fen09,
Remark 5.3]: if τµ = τL for an essential loop class L, then µ satisfies the multifractal
formalism. This result follows for any IFS satisfying the Φ-FNC by combining
Proposition 5.4, the fact that the essential loop class is always irreducible, and the
general upper bound fµ ≤ τ ∗µ ,
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A sufficient condition for the measure µ to fail the multifractal formalism is for the
set of attainable local dimensions of µ to not be a closed interval. In general, this
condition is not necessary. However, in certain situations, we can determine that it
is necessary and sufficient.

Corollary 7.5. Suppose the transition graph G is decomposable. Suppose in addition
that every non-essential loop class is simple and non-degenerate. Then µ satisfies the
multifractal formalism if and only if the set of local dimensions

{dimloc(µ, x) : x ∈ K}

is a closed interval.

Proof. The forward direction is immediate.
Conversely, denote the loop classes by {L1, . . . ,Lm}. If L is any simple loop

class, then fL(α) = 0 for precisely one value of α, and is −∞ otherwise. Since the
essential loop class and any simple loop class is irreducible, by Remark 5.5, we
have

fL(α) = max{fL1(α), . . . , fLm(α)} = fµ(α).

Thus the result follows by Corollary 7.3. □

7.2. A family of examples of Testud. Let ℓ ≥ 2 be a positive integer. Let P,N ⊆
{0, 1, . . . , ℓ − 1} where {0, ℓ − 1} ⊆ P ∪ N . Let I = P × {1} ∪ N × {−1} and for
(i,±1) ∈ I, define

S(i,1)(x) =
x

ℓ
+
i

ℓ
S(i,−1)(x) = −x

ℓ
+
i+ 1

ℓ
.

In this subsection, we study the multifractal theory of the IFS {Si}i∈I . This
family of IFS was studied in [Tes06] and [OS08] under the assumption that
P = {0, 1, . . . , ℓ− 1}. We do not require this assumption in our analysis.

Fix the iteration rule Φ from Example 3.7. Write V = {v1, v−1, v±1} where
v1 = {x 7→ x}, v−1 = {x 7→ −x + 1} and v±1 = v1 ∪ v−1. Since the images
S(i,±1)((0, 1)) are either disjoint or coincide exactly,

Pn = {Sσ([0, 1]) : σ ∈ In}.

In particular, if ∆ ∈ P is any net interval, then V(∆) ∈ V . Thus (Si)i∈I satisfies the
Φ-FNC. Note that v1 = vroot ∈ V (G).

If P ∩N = ∅, then the IFS satisfies the open set condition with respect to the
open interval (0, 1). Otherwise, there exists some index i such that (i, 1) and (i,−1)
are both in I, so that v±1 is a neighbour set in V . For the remainder of this section,
we will assume that this is the case. The open set condition may hold even when
P ∩ N ̸= ∅ with respect to an open set that is not an interval (take, for example,
ℓ = 4, P = {0, 1, 3}, and N = {1}), but for simplicity we omit this discussion.
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7.2.1. Properties of the transition graph. We begin with a description of the transition
graph G.

Proposition 7.6. Suppose P ∩ N ̸= ∅. There is a unique essential loop class Gess, and
v±1 ∈ V (Gess). Moreover, exactly one of the following holds:

(i) We have P = N . Then Gess is the only loop class and V (Gess) = {v±1}.
(ii) There is some i such that i ∈ P \N and ℓ−1−i /∈ P or i ∈ N\P and i, ℓ−1−i /∈ N .

Then Gess is the only loop class and V (Gess) = V (G) = {v1, v−1, v±1}.
(iii) Otherwise, there is exactly one non-essential loop class L. In this case, if P \N ̸= ∅,

then v1 ∈ V (L), and if N \ P ̸= ∅, then v−1 ∈ V (L).

Proof. If i ∈ P∩N , then {(i, 1), (i,−1)} ⊂ I so that S(i,1)([0, 1]) = S(i,−1)([0, 1]) =
∆ is a net interval with neighbour set v±1. This neighbour set is essential since if
∆ = Sσ([0, 1]) is any net interval, then Sσ(i,1)([0, 1]) is a net interval with neighbour
set v±1.

It is clear that exactly one of the conditions must hold. We verify corresponding
properties of the transition graph G.

(i) If P = N , then for any net interval in P1, we see that V(∆) = v±1. Thus every
outgoing edge from vroot ends at the vertex v±1.

(ii) Suppose there is some i ∈ P \N with ℓ− 1− i /∈ N . Let ∆ = Sσ([0, 1]) ∈ Pn

have V(∆) = v±1. Then Sσ(i,1)([0, 1]) is a net interval with V(∆) = v1 and
Sσ(ℓ−1−i,−1)([0, 1]) is a net interval with V(∆) = v−1.
The other case follows similarly.

(iii) Finally, suppose (i) and (ii) do not hold. Let Sσ([0, 1]) = ∆ be a net interval
with V(∆) = v±1, and suppose rσ > 0, and τ has rτ < 0 and Sτ ([0, 1]) = ∆ as
well. Suppose i ∈ P so that ∆′ = Sσ(i,1)([0, 1]) is a child of ∆. Then negating
the condition (ii), we either have i ∈ N (and ∆′ has neighbours generated
by σ(i, 1) and σ(i,−1)) or ℓ− 1− i ∈ P (and ∆′ has neighbours generated by
σ(i, 1) and τ(i, 1)), so ∆′ has neighbour set v±1. The other case i ∈ N , or the
cases where ∆′ = Sτ(i,±1)([0, 1]), follow similarly. Thus V (Gess) = {v±1}.
Since P ̸= N , if P \ N ̸= ∅, there is an edge from vroot = v1 to v1 and if
N \ P ̸= ∅, there are edges from v1 to v−1 and v−1 to v1. Thus the claim
follows. □

We can now observe the following result.

Lemma 7.7. With any choice of probabilities, the transition graph G is irreducible and
decomposable.

Proof. The essential loop class Gess is always irreducible by Lemma 4.6. If
there is a loop class L, we observe that either V (L) consists of a single vertex or
V (L) = {v1, v−1} and there are edges joining v1 and v−1 and v−1 and v1.

Since the neighbour sets v1 and v−1 have cardinality one, irreducibility follows
by Lemma 4.5. Decomposability follows directly from Lemma 4.10. □

7.2.2. Multifractal properties of associated measures. We can compute formulas for
the loop class Lq-spectra.
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Proposition 7.8. (i) Suppose L is a non-essential loop class. Let J = (P \N)∪ (N \
P ), and for j ∈ J , write pj = p(j,1) if j ∈ P \ N , and pj = p(j,−1) if j ∈ N \ P .
Then

τL(q) =
log

∑
j∈J p

q
j

− log ℓ
.

(ii) Let T (x) = 1− x. Then with ν = µ+ µ ◦ T ,

τGess(q) = τν(q).

Proof. (i) Observe that there is a bijection between paths in Ωn
L and words

in J n. Moreover, if η ∈ Ωn
L has corresponding sequence (j1, . . . , jn) ∈ J n,

a direct computation gives that ρ(η) = ∥T (η)∥ = pj1 · · · pjn . Thus since
vroot = v1 ∈ V (L),

τL(q) = τL,∅(q) = lim
n→∞

log
∑

(j1,...,jn)∈J n pj1 · · · pjn
−n log ℓ

= lim
n→∞

log
(∑

j∈J pj

)n

−n log ℓ

=
log

∑
j∈J p

q
j

− log ℓ

as claimed.
(ii) Let ∆ ∈ P1 have V(∆) = v±1. By Proposition 5.4, τGess(q) = τµ|∆(q). But for

any Borel set E ⊆ ∆, we have by (3.8) since V(∆) = {id, T}

µ(E) = µ(E)p(i,1) + µ ◦ T (E)p(i,−1) ≈ ν(E).

Thus τGess(q) = τν(q) for any q ∈ R. □

We now observe the following conclusion.

Theorem 7.9. If there is no non-essential loop class, then µ satisfies the multifractal
formalism. Otherwise, there is a single non-essential loop class L. Then

τµ(q) = min{τL(q), τGess(q)}
fµ(α) = max{τ ∗L(α), τ ∗Gess

(α)}.

Proof. This follows directly from Lemma 7.7 by the general results Corol-
lary 6.13 and Theorem 6.15. □

7.3. Bernoulli convolutions with Pisot contractions.

7.3.1. Simple Pisot contractions. A simple Pisot number is the unique positive real
root of a polynomial

pk(x) = xk − xk−1 − · · · − x− 1
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for some k ≥ 2. We denote this number by rk. Naturally, rk is a Pisot number, which
is a real algebraic number strictly greater than 1 with Galois conjugates having
modulus strictly less than 1. Note that r2 = (

√
5 + 1)/2 is the Golden ratio, and

1 < r2 < r3 < r4 < · · · < 2.
We are interested in the (possibly biased) Bernoulli convolution associated

with the parameter λ = 1/rk, which we view as a self-similar measure associated
with the IFS

S1(x) = λx S2(x) = λx+ (1− λ)

and probabilities p1, p2 > 0 with p1 + p2 = 1. It is known (since at least [NW01])
that the IFS (Si)i=1,2 satisfies the finite type condition, and thus satisfies the finite
neighbour condition with respect to the iteration rule from Example 3.7.

In [Fen05], Feng proved, with probabilities p1 = p2 = 1/2, that the associated
self-similar measure satisfies the multifractal formalism. Here, we show how this
result can be obtained as a special case of our general results.

Fix any probabilities p1, p2 > 0 with p1 + p2 = 1. We first obtain basic results
on the structure of the transition graph G and some information on sets of local
dimensions.

Proposition 7.10. The transition graph G has a unique essential loop class Gess and two
non-essential simple loop classes L1 and L2. Both loop classes L1 and L2 have a single
vertex which is a neighbour set which has cardinality one.

Each Ω∞
Li

consists of a single path γi, where π(γ1) = 0 and π(γ2) = 1, and

(7.2)
dimloc(µ, 0) = dimloc(ρ, γ1) =

log p1
log λ

dimloc(µ, 1) = dimloc(ρ, γ2) =
log p2
log λ

.

Moreover, there exists a γ ∈ Ω∞
Gess

such that

dimloc(µ, π(γ)) =
log p1p2
2 log λ

.

Proof. We will assume that k ≥ 3; the case k = 2 is similar, but easier (in fact,
full details of the computation are given in [HR22, Section 5.1]).

By a direct computation, the part of the graph G spanned by Ω2 is given in
Figure 4, along with the net intervals in P2 drawn in Figure 5. The net intervals
labelled ∆i for i = 1, 2, 3 have neighbour sets V(∆i) = vi, which are the labelled
vertices in the partial transition graph.

We can now see that the leftmost child of ∆1 has neighbour set v2, and the
corresponding edge e12 has T (e12) =

(
ap1

)
and W (e12) = λ for some constant

a > 0. Similarly, there is an edge e21 from v2 to v1 with T (e21) =
(
a−1p2

)
and

W (e21) = λ. From here, a straightforward induction argument (using the fact that
λk + λk−1 + · · · + λ − 1 = 0) yields that, in fact, v1, v2, v3 are vertices in a unique
essential loop class Gess, and the cycles labelled as L1 and L2 indeed make up
simple loop classes.
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vroot

v1 v2v3

e′1 e′2
e1 e2L1 L2

FIGURE 4. Partial transition graph for the simple Pisot Bernoulli convo-
lution

0 λ
−
λ 2

λ 2

1−
λ

λ 1−
λ 2

1−
λ
+
λ 2

1

∆1 ∆3 ∆2

FIGURE 5. Net intervals in P2 for the simple Pisot Bernoulli convolution

Since the edge e1 (resp. e2) corresponds to the left-most (resp. right-most) child
of the base net interval [0, 1] and vroot is not in any loop class, it follows for i = 1, 2
that ΩLi

consists of a single path γi = (e′i, ei, ei, . . .) with π(γ1) = 0 and π(γ2) = 1.
Moreover, since T (ei) =

(
pi
)

and W (ei) = λ, ∥T (γi|n)∥ ≈ pni and thus (7.2) holds.
Now since θ = (e12, e21) is a cycle and an interior path in Gess, let γ denote any path
of the form γ0θθ . . ., so γ ∈ Ω∞

Gess
and by Lemma 3.13

dimloc(µ, π(γ)) = dimloc(ρ, γ) =
log p1p2
2 log λ

.

as claimed. □

Theorem 7.11. Let µ the Bernoulli convolution associated with the Pisot number rk.
Then µ satisfies the multifractal formalism if and only if p1 = p2 = 1/2.

Proof. It follows from a general observation in [HH19, Theorem 3.1] that if
p1 ̸= 1/2, then the set of attainable local dimensions of µ is not a closed interval
(this holds for any overlapping biased Bernoulli convolution, with no separation
assumptions). Thus µ does not satisfy the multifractal formalism.

Conversely, when p1 = p2 = 1/2, it follows from Proposition 7.10 that the set of
local dimensions is a closed interval. The IFS is decomposable by Lemma 4.10, so
by Corollary 7.5, µ satisfies the multifractal formalism. □
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7.3.2. Other Pisot contractions. More generally, we can take r ∈ (1, 2) to be any Pisot
number. Let µ be the Bernoulli convolution with parameter λ = 1/r associated
with probabilities p1 and p2. We have the following result.

Theorem 7.12. Suppose r is the Pisot number which is the unique positive real root of
any of the polynomials below:

• x3 − 2x2 + x− 1.
• x4 − x3 − 2x2 + 1.
• x4 − 2x3 + x− 1.

Let G be the transition graph associated with the Bernoulli convolution with parameter
λ = 1/r. Then G has one essential loop class Gess and two simple loop classes L1 and L2,
each of which has a single vertex which is a neighbour set of size one. Moreover, the set of
local dimensions is a closed interval with right endpoint log 2/ log r when p1 = p2 = 1/2.

In particular, µ satisfies the multifractal formalism if and only if p1 = p2 = 1/2.

Proof. This follows by a direct computation, preferably with the aid of a com-
puter: the net intervals in P2 have the same relative placement and the corre-
sponding transition matrices are the same as given in Proposition 7.10. Thus the
conclusion follows by the same argument as Theorem 7.11 □

7.4. A family of non-equicontractive examples. Fix parameters λ1, λ2 > 0 and
consider the IFS given by

S1(x) = λ1x S2(x) = λ2x+ λ1(1− λ2) S3(x) = λ2x+ (1− λ2)(7.3)

where λ1 + 2λ2 − λ1λ2 ≤ 1. Note that the case λ1 = λ2 = 1/3 is discussed in
Example 3.2. This IFS was first introduced in [LW04, Proposition 4.3], and the
multifractal analysis of this measure was studied extensively in [DN17; Rut23].

The IFS in (7.3) is a special case of the following general construction. Fix
parameters λ1, λ2 > 0 and some k ∈ N, and for j ∈ {0, 1, . . . , k} let βj = λ1 ·(λ2/λ1)j .
Then consider the IFS given by the k + 2 maps

(7.4)

S0(x) = λ1x

Si(x) = βix+
i∑

j=1

βj−1(1− βj) for each i ∈ {1, . . . , k}

Sk+1(x) = λ2x+ (1− λ2)

under the constraint Sk(1) + λ2 ≤ 1. This IFS coincides with (7.3) when k = 1, and
coincides with [DN17, Example 8.5] when k = 2.

The author proved in [Rut23, Theorem 5.7] that any self-similar measure asso-
ciated with the IFS (7.3) satisfies the multifractal formalism. However, the proof in
that paper is complicated by the use of the iteration rule given in Example 3.8. If
we instead take the iteration rule from Example 3.7 with corresponding transition
graph G, the situation is much more straightforward, even with our general setup.

Proposition 7.13. The transition graph G is strongly connected.
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Proof. The definition of the IFS (Si)
k+1
i=0 ensures for each i = 1, . . . , k that

(7.5) Si−1 ◦ Sk+1 = S0 ◦ Si and Si−1(0) < Si(0) < Si−1(1) < Si(1),

and by assumption Sk(1) ≤ Sk+1(0). Thus the net intervals in P1 are the intervals

∆0 = [0, S1(0)] ∆k = [Sk−1(1), Sk(1)] ∆k+1 = Sk+1([0, 1])

and

∆i,i+1 = [Si(1) ∩ Si+1(0)] for i = 0, 1, . . . , k − 1

∆i = [Si(1), Si+1(0)] for i = 1, . . . , k − 1

which are ordered from left to write as (∆0,∆0,1,∆1, . . . ,∆k−1,k,∆k,∆k+1). Note
that vroot = V(∆k+1), and set vi = V(∆i) for i = 0, . . . , k and vi,i+1 = V(∆i,i+1) for
i = 0, . . . , k − 1. Set V = {vroot} ∪ {vi : i = 0, . . . , k} ∪ {vi,i+1 : i = 0, . . . , k − 1}.

It follows from (7.5) that the net intervals in P2 contained in Si([0, 1]) for all
0 ≤ i ≤ k + 1 are just the intervals Si(∆j) and Si(∆j,j+1) with V(Si(∆j)) = vj and
V(Si(∆j,j+1)) = vj,j+1 for all valid j. Tracking inclusion of these net intervals in the
net intervals in P1 yields the graph G ′ with (unlabelled) edges given by

• (vroot, v) for all v ∈ V .
• (v0, v) for all v ∈ V \ {vroot}.
• (vk, v) for all v ∈ V \ {v0, v0,1}.
• (vi, v) for all v ∈ V \ {v0, v0,1, vroot} and i ∈ {1, . . . , k − 1}.
• (vi−1,i, v) for all v ∈ {v0, v0,1} and i ∈ {1, . . . , k}.

In particular, we observe that G ′ is strongly connected. Note that, for certain choices
of k, λ1, λ2, the list V of neighbour sets given above may include repetitions. In any
case, the transition graph G is given by identifying vertices in G ′ corresponding to
the same neighbour set, so G is strongly connected. □

Theorem 7.14. Let µ be any self-similar measure associated with the IFS (Si)
k+1
i=0 from

(7.4). Then µ satisfies the multifractal formalism.

Proof. This is immediate from Proposition 7.13 and Corollary 7.2. □

ACKNOWLEDGEMENTS

The author would like to thank Kathryn Hare for many extensive discussions
concerning the topics in this paper. The author also thanks Jonathan Fraser and
Kenneth Falconer for detailed comments on a draft version of this paper, and more
generally for helpful comments and suggestions.

The author was supported by EPSRC Grant EP/V520123/1 and the National
Sciences and Engineering Council of Canada.



MULTIFRACTAL DECOMPOSITION 59

REFERENCES

[AP96] M. Arbeiter and N. Patzschke. Random self-similar multifractals. Math. Nachr.
181 (1996), 5–42. zbl:0873.28003.

[CM92] R. Cawley and R. D. Mauldin. Multifractal decompositions of Moran fractals.
Adv. Math. 92 (1992), 196–236. zbl:0763.58018.

[DN17] G. Deng and S.-M. Ngai. Differentiability of Lq-spectrum and multifractal
decomposition by using infinite graph-directed IFSs. Adv. Math. 311 (2017),
190–237. zbl:1459.28004.

[Fal97] K. Falconer. Techniques in fractal geometry. Chichester: John Wiley & Sons,
1997. zbl:0869.28003.

[Fen03] D.-J. Feng. Smoothness of the Lq-spectrum of self-similar measures with overlaps. J.
Lond. Math. Soc. 68 (2003), 102–118. zbl:1041.28004.

[Fen05] D.-J. Feng. The limited Rademacher functions and Bernoulli convolutions
associated with Pisot numbers. Adv. Math. 195 (2005), 24–101.
zbl:1078.11062.

[Fen09] D.-J. Feng. Lyapunov exponents for products of matrices and multifractal analysis.
II: General matrices. Israel J. Math. 170 (2009), 355–394. zbl:1181.37073.

[Fen12] D.-J. Feng. Multifractal analysis of Bernoulli convolutions associated with Salem
numbers. Adv. Math. 229 (2012), 3052–3077. zbl:1244.28003.

[Fen16] D.-J. Feng. On the topology of polynomials with bounded integer coefficients. J.
Eur. Math. Soc. 18 (2016), 181–193. zbl:1332.11066.

[FH09] D.-J. Feng and H. Hu. Dimension theory of iterated function systems. Comm.
Pure Appl. Math. 62 (2009), 1435–1500. zbl:1230.37031.

[FL09] D.-J. Feng and K.-S. Lau. Multifractal formalism for self-similar measures with
weak separation condition. J. Math. Pures Appl. (9) 92 (2009), 407–428.
zbl:1184.28009.

[FLW05] D.-J. Feng, K.-S. Lau, and X.-Y. Wang. Some exceptional phenomena in
multifractal formalism. II. Asian J. Math. 9 (2005), 473–488.
zbl:1134.28008.

[FLW02] D.-J. Feng, K.-S. Lau, and J. Wu. Ergodic limits on the conformal repellers. Adv.
Math. 169 (2002), 58–91. zbl:1033.37017.

[HJK+86] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman.
Fractal measures and their singularities: the characterization of strange sets. Phys.
Rev. A (3) 33 (1986), 1141–1151. zbl:1184.37028.

[HHN18] K. Hare, K. Hare, and M. K. S. Ng. Local dimensions of measures of finite type II:
measures without full support and with non-regular probabilities. Can. J. Math. 70
(2018), 824–867. zbl:1457.28008.

[HH19] K. E. Hare and K. G. Hare. Local dimensions of overlapping self-similar measures.
Real Anal. Exchange 44 (2019), 247–266. zbl:1440.28010.

[HHR21] K. E. Hare, K. G. Hare, and A. Rutar. When the weak separation condition
implies the generalized finite type condition. Proc. Amer. Math. Soc. 149 (2021),
1555–1568. zbl:1466.28010.

https://zbmath.org/0873.28003
https://zbmath.org/0763.58018
https://zbmath.org/1459.28004
https://zbmath.org/0869.28003
https://zbmath.org/1041.28004
https://zbmath.org/1078.11062
https://zbmath.org/1181.37073
https://zbmath.org/1244.28003
https://zbmath.org/1332.11066
https://zbmath.org/1230.37031
https://zbmath.org/1184.28009
https://zbmath.org/1134.28008
https://zbmath.org/1033.37017
https://zbmath.org/1184.37028
https://zbmath.org/1457.28008
https://zbmath.org/1440.28010
https://zbmath.org/1466.28010


60 ALEX RUTAR

[HHS21a] K. E. Hare, K. G. Hare, and W. Shen. The Lq-spectrum for a class of self-similar
measures with overlap. Asian J. Math. 25 (2021), 195–228. zbl:1482.28011.

[HHS21b] K. E. Hare, K. G. Hare, and W. Shen. The Lq-spectrum for a class of self-similar
measures with overlap. Asian J. Math. 25 (2021), 195–228. zbl:1482.28011.

[HR22] M. Hochman and A. Rapaport. Hausdorff dimension of planar self-affine sets
and measures with overlaps. J. Eur. Math. Soc. 24 (2022), 2361–2441.
zbl:1502.28005.

[HL01] T.-Y. Hu and K.-S. Lau. Multifractal structure of convolution of the Cantor
measure. Adv. Appl. Math. 27 (2001), 1–16. zbl:0991.28008.

[Hut81] J. E. Hutchinson. Fractals and self similarity. Indiana Univ. Math. J. 30 (1981),
713–747. zbl:0598.28011.

[LN99] K.-S. Lau and S.-M. Ngai. Multifractal measures and a weak separation condition.
Adv. Math. 141 (1999), 45–96. zbl:0929.28007.

[LN07] K.-S. Lau and S.-M. Ngai. A generalized finite type condition for iterated function
systems. Adv. Math. 208 (2007), 647–671. zbl:1113.28006.

[LW04] K.-S. Lau and X.-Y. Wang. Iterated function systems with a weak separation
condition. Studia Math. 161 (2004), 249–268. zbl:1062.28009.

[LW05] K.-s. Lau and X. Wang. Some exceptional phenomena in multifractal formalism. I.
Asian J. Math. 9 (2005), 275–294. zbl:1116.28010.

[McM84] C. McMullen. The Hausdorff dimension of general Sierpiński carpets. Nagoya
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