Fibre stability for dominated self-affine sets

ROOPE ANTTILA & ALEX RUTAR

ABSTRACT. Let K be a planar self-affine set. Assuming a weak domina-
tion condition on the matrix parts, we prove for all backward Furstenberg
directions V' that

max max dimg (7} (z) N E) = dimp K — dimp 71 (K).
E€Tan(K) zem, | (E) u(my L (z) N E) A Ay (K)
Here, Tan(K') denotes the space of weak tangents of /. Unlike previous work
on this topic, we require no separation or irreducibility assumptions.
From this we obtain two applications. Firstly, if in addition the strong
separation condition holds, then there exists a V' € X so that

max dimH(ﬂ';i () N K) = dimp K — dimp 7y (K).
zem, ) (K)
Secondly, if in addition the IFS is irreducible (but with no assumptions on
separation), then either dima K < 1 and the conformal Assouad dimension of
K is0,or dimy K > 1 and K is minimal for conformal Assouad dimension.
Our key innovation is a certain amplification argument for slices of weak
tangents via pigeonholing arguments.
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1. INTRODUCTION

Since the seminal work of Marstrand [ ], geometric properties of projections
and slices of sets has been a fundamental and highly active research topic in fractal
geometry. Marstrand gave upper bounds for typical slices (in the sense of the
Lebesgue measure on the space of directions) of planar Borel sets and showed
that the Hausdorff dimensions of typical projections are as large possible. These
results have since been extended to higher dimensions and stronger results have
been established under various structural assumptions, see for example [ ;
; ; ; ; ; I

One caveat in Marstrand’s theorems is that the sets of directions where the
results hold are not explicit and bounding the dimensions of concrete slices and
projections has remained a difficult problem. In this context, the study of slices of
planar self-affine sets has received much attention recently; for instance, we refer
the reader to [ ; ; ; ; ; ]. It turns out that there
is a natural connection between the Assouad dimension, see §1.1, of self-affine sets,
and the dimensions of their slices and projections in certain directions called the
(backward) Furstenberg directions. These directions, which we denote by X, are
essentially the ones in which deep iterates of the maps in the IFS are contracting
as much as possible, see §3 for a precise definition. In general, it is expected that
for self-affine sets K there is a direction V' € X such that
(1.1) dimp K = dima my2 (K) + max _dima (7} (z) N K),

zem, 1 (K)

where dimy K denotes the Assouad dimension of K and my. is the orthogonal
projection along the direction V. This question was originally motivated in the
case of diagonal matrices by Mackay [ ], and for more general self-affine sets
by the work of Bardny-Kdenmaki-Rossi [ ]. This also appears as a question
explicitly in [ , Question 17.5.1]. Equation (1.1) can be interpreted as a kind
of stability under projections: the largest fibre stores the dimension lost in the
projection. With this motivation we call self-affine sets satisfying (1.1) fibre stable.

Fibre stability has been established for various self-affine sets under a number
of assumptions; for attractors of affine IFSs where each A, is a diagonal matrix
see [ ; ; ; ], and for more general self-affine sets see [ ;

; ]. In all of these works (with the exception of [ ] concerning

Baranski carpets), domination of the matrix parts of the IFS, see §3.1, has played a
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crucial role. Domination imposes a structure on the action of the matrix parts of
the IFS on real projective space RP' which is useful when analysing the directions
in Xp. Moreover, in all previous results, the authors have assumed that either
the projections have Hausdorff dimension 1 (as follows from an irreducibility
assumption on the matrix parts if the set has Hausdorff dimension at least 1)
[ ; ; ], or are very well-behaved [ ; ; ; ]. In
particular, until the present work, [ , Question 17.5.1] was still open in its full
generality for dominated self-affine sets satisfying the strong separation condition,
even in the special case when all of the matrices are diagonal.

Our main result in this paper is a slicing theorem for dominated planar self-
affine sets with no separation assumptions and no assumptions on the geometry of
the projections. In fact, for our purposes a slightly weaker variant of domination
suffices: we say that an affine IFS is weakly dominated if the matrix parts of the
IFS can be decomposed into two subcollections, one of which is dominated and
the other one of which consists of similarity maps which preserve the invariant
directions, see Definition 3.3 for the precise definition. Our proof technique is
entirely self-contained and combines some basic geometric properties of matrix
semigroups with pigeonholing arguments to obtain a type of amplification result
for large slices. Most notably, we do not depend on the deep work of [ ;

], which has played a critical role in previous work. Our results establish
tibre stability for weakly dominated self-affine sets satisfying the strong separation
condition in the plane and give the lower bound in (1.1) for the Assouad dimension
with no separation assumptions. We believe that the techniques in this paper will
prove useful beyond the weakly dominated case.

1.1. Large weak tangents and Assouad dimension. Before stating our results
let us set up some notation and recall some properties of the Assouad dimension.
The Assouad dimension of a bounded set I' C R” is the number

dimAF:inf{sz(): 3C >0, suchthatV0 < r < R< 1,z € F

N,(FNB(z,R) < C (?) }

where N, (E) denotes the smallest number of open balls of radius r required to
cover the set £ C R”. We note that at various points in the article we use alternate
definitions, where N, (E) is replaced by the cardinality of the largest r-separated
subset of £ or the dyadic covering number of £ at a scale 27" ~ r. Making these
modifications does not affect the value of the Assouad dimension.

The Assouad dimensions of compact sets are closely related to the notion of
a weak tangent. For a closed set I, we denote by IC(F) the set of all non-empty
compact subsets of F' equipped with the Hausdorff metric d;. We then say that a set
E € K(B(0,1)) is a microset of F' if there exists a sequence (z,);°; C F and scales
(rn)pe, with 0 < r, <1 such that

E = lim r,}(F — z,) N B(0,1).

n—oo

Moreover, we say that E is a weak tangent of F if, in addition, lim,,_,., 7, = 0. We
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denote the set of all microsets of F' by Gr, and the set of all weak tangents of F' by
Tan(F'). In general, Tan(F') C G C K(B(0,1)). We emphasize here that we do not
permit rotations in our definition of a weak tangent.

A key observation is that the largest microset of a set exhibits substantially
more regularity than the original set. The proof of the following proposition is due
to Furstenberg, but the explicit connection to Assouad dimension was first made
in [ ] and the amplification to Hausdorff content was noted in [ 1.

Proposition 1.1 ([ D). Let F C R be a compact set with n = dims F. Then
dimy A <nforall E € Gr. Moreover, there is an E € Tan(F') such that H!_(E) > 1.

The main point is that a maximal microset of F' has dimy £/ = dima E = dimy F),
which is a substantially gain in regularity over the original set.

1.2. Main results. Recall that an affine iterated function system (IFS) is a finite
collection (7} ),z of contracting invertible affine maps on R?, that is 7; (x) = Ajz+0;,
for each i € Z, where A4; is an invertible 2 x 2 matrix with ||4;|| < 1 and b; € R*. The
attractor of the IFS, which is also called the self-affine set, is the unique non-empty
and compact set K, which satisfies

K = Ty(K).

i€T

Overlaps between distinct images 7;(K') often cause problems when studying
the geometry of self-affine sets, so it is a common practice to impose various
separation conditions on the IFSs. The most common one is the strong separation
condition, which we say that the IFS (T;);c7 satisfies if T;(K) N T;(K) = ( for all
i # j. We note that the vast majority of results concerning the dimension theory of
self-affine sets involves some form of separation condition.

Let RP' denote the real projective space of one dimensional subspaces of R?. For
V,W € RP! with V # W, we denote by 7V : R* — V the projection onto V along
W, which is the unique linear map satisfying im(7}Y ) = V and ker(7}') = W such
that ¥ (v) = v for all v € V. If W is not specified, then 7, : R*> — V denotes the
orthogonal projection onto V.

Our first result is a general slicing theorem for weak tangents, which surpris-
ingly seems to have not been noticed before (in the context of self-affine sets) even
though it is a straightforward consequence of Furstenberg’s dimension conser-
vation result [ , Theorem 6.1]. The result also has a short elementary proof
which we give in §2 to keep the paper self-contained.

Proposition A. Let F' C R? be an arbitrary non-empty compact set, and let W € RP'
be arbitrary. Then there exists an E € Tan(F) and x € my (E) such that

dimg (7 () N E) > max{dims F — dima 7y (F),0}.

The maximum is relevant since the Assouad dimension can in fact increase under
projection, even for self-similar sets: see, for instance, [ , §3.1]. In general,
it can happen for all directions IV that there exists a weak tangent £ such that
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dima my (F) + dimg (7! (z) N E) substantially exceeds the Assouad dimension of
F. As a simple example consider the following. For each W € RP', let Cy, =
(WUW)n B(0,1) denote the “plus”-shaped set containing the origin oriented in
direction W. Let (W,,)>>, C RP' be dense, and define the set

C=J27 " Cw, +(27,0).
n=1

Then dims C = dimg C = 1, but for all W € RP?, there exists E € Tan(F), such
that dims my (C) + dimg 7y, (0) N E = 2. Moreover, one cannot hope to improve
Proposition A to slices of the original set; easy counterexamples are already given
by function graphs of dimension strictly larger than 1.

On the other hand, for self-affine sets we can say a lot more. The following is
the main result of this paper.

Theorem B. Let (T;);cz be a weakly dominated self-affine IFS with attractor K. Then
the map V' +— dimp my 1 (K) takes constant value n < dimy K on Xp. Moreover, for all
Ve Xp,

dimy K —n = Eer%li)(cm xegrr\li)zE) dimy(7,} (z) N E)

> max dima(7ol ()N K
- acETFVL)((K) A(WVL( ) )

If in addition (T;),c1 satisfies the strong separation condition, then

: . 1
dimy K —n = max xeﬂmvzﬁ(m dimg(my. ()™ N K).

The proof of this result is split into multiple parts: Theorem 4.1 and Corollaries 5.1,

5.2 and 5.4. Also, for a reader only interested in the special case when the matrices

are all diagonal, we give a condensed proof in Appendix A.

Let us make a few comments on Theorem B.

1. We require no assumptions concerning the projections of the self-affine set
or irreducibility of the matrix parts. Most notably, our results also hold (and
are new in this generality) for reducible self-affine sets, such as self-affine
carpets satisfying the weak domination hypothesis.

2. The conclusion concerning slices of weak tangents holds uniformly over all
directions: rather than the maximal value being attained at some direction
in X, the maximum is attained in all directions in X simultaneously. For
slices of the set itself, except for trivial reasons (for instance in the carpet case
when X is a singleton), it seems that there is no reason for this to be the case;
see the proof of Corollary 5.4. However, since there are not many tools to
give non-trivial upper bounds for dimensions of all slices of a self-affine set
in a given direction, coming up with counterexamples seems to be difficult.

3. The results concerning slices of weak tangents and upper bounds on slices
of K hold with no separation assumptions at all; the planar separation is
only required to “pull back” slices of the weak tangent to the original set (see
Corollary 5.4 for the short proof).
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4. A somewhat weaker variant of the strong separation condition called the
weak bounded neighbourhood condition suffices; see Definition 5.3.
In particular, this result substantially generalizes all previously known results
concerning slices in backwards Furstenberg directions [ ; ; ;
; ; ] and establishes fibre stability for weakly dominated and
strongly separated self-affine sets.

Since the value dimy K — 7 in the statement of Theorem B is a fixed number
depending only on K, Theorem B in fact is a general statement concerning slices
of sets which a priori has nothing to do with the Assouad dimension of the set:
assuming the strong separation condition,

max max dimy(m, 1 (z) N K)
VeXp xGWVL(K)

SUD, ey () 108 Nr(w‘;1 (B(z, 7’)) NF)

= max lim sup

VEXr o0 log(1/7)
= max max dimy (7,1 (z) N K).
VeXp “?EWVL(K)

The additional equivalence involving tubes follows by regularity of the space of
weak tangents; see Corollary 5.6. This equivalence is new even in the special case
when Xy is a singleton.

Let us also emphasize that the value 7 is the constant value of the Assouad
dimension, rather than the Hausdorff dimension, of the relevant projections. In
[ ; ; ], this formula was written with Hausdorff dimension,
but in those cases the assumptions implied that dimy 7y (K) = 1 forall V € Xp.
Indeed, the following example follows from [ , Theorem 2.13], using a similar
construction as used in [ , §2.5] except with non-trivial fibres to guarantee that
there is a symbolic slice with Assouad dimension 1.

Proposition 1.2 ([ D. Let ¢ > 0 be arbitrary. Then there is a planar dominated
self-affine set K with dima K = 2 such that for all Ve Xpand z € myo(K),
dimp 7y2 (K) < e and dimg(7,, | (z) N K) <

This example also shows that in general, the separation assumption is needed
for the second part of Theorem B to hold as stated. However, we are unsure
whether or not the separation assumption is needed for the result to hold for the
Assouad dimension of slices instead of Hausdorff dimension. More precisely, we
ask the following question.

Question 1.3. Let (T;);ez be a weakly dominated self-affine IFS with attractor K and let
n be the constant value of the map V +— dimp my . (K) on Xp. Is it true that

dimy K —n = max max dim(r;} (z) N K)?
VGXF%EWVJ_(K)

To conclude the introduction, let us note two direct applications of Theorem B.
First, we are able to complete a partial result due to Fraser & Jordan concerning
certain self-affine carpets with no grid structure. Let 0 < oo < 8 < 1 and consider
the self-affine system defined by maps 7;(z,y) = (8, ay)+(b;, a;) for 0 < b, < 1-0
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and 0 < q; < 1 — o, and let v denote the uniform self-similar measure associated
with the projected IFS defined by maps (5 + b;);cz. Finally, let s = dim., v denote
the Frostman dimension of v. The following result generalizes [I'] 17, Theorem 2.2];
for the proof, along with more careful exposition, see §5.2.

Corollary C. Let K be the self-affine set corresponding to the IFS (T;);cz defined above,
with parameters 0 < o < 3 < 1. Assume moreover that the T;((0,1)*) N T;((0,1)?) = @
forall i # j. Let s denote the Frostman dimension of v. Then

log m3*
log(1/a)’

Finally, we note an application to conformal Assouad dimension, which follows
from Theorem B combined with a strong projection theorem for Assouad dimen-

sion due to Orponen [ ]. We recall that the conformal Assouad dimension is
defined by

dimpy K = dimy 7(K) +

Cdimy X = inf {dim, f(X): f is a quasisymmetry} .

We refer the reader to §5.3 for more background. Also, recall that a self-affine set
is irreducible if no linear subspace in RP" is preserved by all of the linear parts of
the affine maps in the IFS. Unlike similar results which have previously appeared
(such as [ , Theorem 3.2] and [ , Theorem B]), we require no separation
assumptions either in the plane or in the projection. The proof can be found in
§5.3.

Corollary D. Let K be a weakly dominated and irreducible self-affine set. If dimy K < 1,
then Cdimp K = 0, and if dimy K > 1, then dimp K = Cdimy K.

1.3. Outline of paper. In §2, we establish some preliminaries concerning mi-
crosets and weak tangents, and in particular in Lemma 2.3 we give a short proof
of the discretized variant of Furstenberg’s microset existence argument. We also
give the self-contained proof of Proposition A. Next, in §3 we establish some
preliminaries concerning weak domination; the results stated here are relatively
standard and are mostly drawn either from [ ] or recent papers concerning
self-affine sets.

The heart of the paper is §4, where we establish the main slicing result for weak
tangents, stated in Theorem 4.1. The key innovation is a combination of Lemma 2.3
to show the existence of microsets with large covering numbers across arbitrary
sequences of scales with a delicate pigeonholing argument to find a collection of
well-aligned copies of approximations of maximal weak tangents of projections
inside the self-affine set. Using the self-affine structure, this configuration, which is
a subset of a thin tube in the direction of the slice, can be pushed to a product-like
structure inside some well chosen cylinder. This approach is made formal in
Theorem 4.9; a more precise (but still informal) discussion of the proof can also be
found immediately preceding Theorem 4.9.

We note for the reader only interested in the special case of Theorem B for
diagonal matrices, since the geometry of the matrix semigroup is very simple in
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this case, §3 and §4.1 can be skipped entirely and a condensed proof can be found
in Appendix A.

Finally, in §5, we complete the remaining minor components of the proof of
Theorem B. We then discuss the application to certain diagonal self-affine sets and
prove Corollary C, and the application to the conformal Assouad dimension of
weakly dominated and irreducible self-affine sets with no separation assumptions,
and prove Corollary D.

1.4. Notation. We use (-, -) to denote the standard dot product on R

For a linear subspace V of R? and a linear map 7': V' — R?, we denote by || 7|
the operator norm of T', that is

[Tl
17 = :
veV\{0} ||v]|
where || - || is the standard Euclidean norm on R?. Given a subspace V' C R? and a

2 x 2 matrix A, which we interpret as a linear map from R* to itself, we denote the
restriction of Ato V by A|V: V — R

We will sometimes make use of the following asymptotic notation. Given a
set A and functions f,g: A — R, we write f 2 g if there is a constant C' such that
f(a) > Cg(a) for all a € A.

2. AMPLIFYING DIMENSION AND SLICING WEAK TANGENTS

In this section, we introduce the techniques we use to bound the Assouad di-
mension from below, the most important of which is a discretized variant of
Furstenberg’s well known construction for measures to show the existence of
microsets with uniformly large branching over arbitrarily long sequences of scales.
This construction plays a crucial role in the proofs of our main results, and enables
us to give a short and self-contained proof of Proposition A.

Let us start by introducing some basic notation concerning dyadic cubes. Fix
deN. LetD = UZO:O D,, denote the set of closed dyadic cubes, where D,, denotes
the subset of dyadic cubes with side-length 27". Given Q € D, let ¢g: Q — [0, 1]¢
denote the unique surjective homothety mapping @ to [0,1]%. Forn € N, and a
bounded set K C R we let N,, denote the level n dyadic covering number of K,
that is

No(K)=#{Q€D,: QNK # @}.

We note that the covering numbers have the property that for any ) € D,, and
n €N,

Ny (K N Q) = No(o(K N Q)) = Nu(vo(K) N Qo).

This simple property will be used throughout the rest of the paper without further
reference.
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2.1. Coarse microsets. Let K;, K, C R% be a non-empty compact set. Let py
denote the one-sided Hausdorff metric

(K13 Ky) = inf{6 > 0: K; ¢ K\,

Here, K. 2(5) denotes the open ¢-neighbourhood of K.

Now let K be a non-empty compact set. We say that a non-empty compact set
E is a coarse microset of K if there is a sequence of expansion ratios A, > 1, points
z, € K, and a bi-Lipschitz map f: R? — R? such that

Tim pyy (f(E); An(K — 7)) = 0.
The following lemma is standard.

Lemma 2.1. Let K C R? be non-empty and compact. Then dimp K > dimy E for any
coarse microset E of K.

In order to lower bound the Assouad dimension of a coarse microset, we also
note the following standard lemma which follows by semi-continuity of dyadic
covering numbers.

Lemma 2.2. Let ' C R? be non-empty and compact and let (F,,)>°, be a sequence of
non-empty compact sets such that

lim dy(F, F,) = 0.

n—00

Suppose moreover that there is an unbounded sequence of natural numbers (m,,)5> ,, such
that

Ny (F,) > 2ks

forall 0 < k < m,,. Then dimy F' > s.

2.2. Dyadic cubes and weak tangents. We now demonstrate the existence of
minisets with uniformly large branching over arbitrarily large sequences of levels.
This is Furstenberg’s well-known pigeonholing construction for measures; see,
for instance, [ , Lemma 2.4.4] or | , Theorem 5.1.3]. Note that (2.2) is a
Frostman-type condition for the measure on () which is uniformly distributed on
Q N K atlevel m.

Lemma 2.3. Let K C [0,1]¢ be a non-empty compact set. Let 0 < s < t, ¢ € N, and
k € Nwith k > (. Suppose there is m > L so that

(2.1) N, (K) > 2m.

Then thereisa 0 < p < m — k and a dyadic cube () € D, so that for all 0 < n < ¢ and
QDQ €Dyip,

NWL(K N Ql) < 2—ns

22) N(KN0Q)
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Proof. If Qo = [0, 1]% satisfies the branching condition (2.2), we are done. Other-
wise, thereis 1 < ¢; < /and a @1 € Dy, so that
(2.3) Ny (K NQyp) > 2m2 0,
Repeating the above argument for each j > 1 with K N @, in place of K and
m —{; —---—{; in place of m, either there is some count ¢ with ¢, +---+(, <m—k

such that the dyadic cube @, € Dy . 4, satisfies the branching condition, or

m > ly+- -+, > m—k. Suppose for contradiction that the latter situation occurs.
Then

2k > N, (K N Q) > 2t (it tli)s > gmli=s),
Rearranging, kd > m(t — s) which contradicts the choice of m. 0

By pigeonholing, we recover the following slightly weaker version of the conclu-
sion which we find somewhat more convenient to use.

Corollary 2.4. Let K C [0, 1] be a non-empty compact set. Let 0 < s < t,{ € N, and
k € Nwith k > {. Suppose there is m > % so that

N (K) > 2™,
Then thereisa 0 < p < m — k and a dyadic cube () € D), so that
Np-i-n(K N Q) Z 2m

forall 0 <n </

Combining Corollary 2.4 with the definition of the Assouad dimension yields the
following.

Corollary 2.5. Let K C [0, 1]¢ be a non-empty compact set with dima K = n. Then
there is a sequence of dyadic cubes (Q,)50_, with diam @Q),,, decreasing to 0 so that

No(¥q,, (K) N Qo) > 2(1w)
forall0 <n <m.

These simple lemmas enable us to give a short and elementary proof of Propo-
sition A which we restate here for convenience.

Restatement (of Proposition A). Let F' C R? be an arbitrary non-empty compact set,

and let W € RP' be arbitrary. Then there exists an E € Tan(F) and x € Ty (E) such
that

dimy (77, (r) N E) > max{dima F — dima my (F),0}.
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Proof. The result is clearly true of dimy 7y (F) > dima F, so we may assume
otherwise. Denote by s = dims F' and = dimp m (F), and let Qo = [0,1]%. By
rotating the set F' if necessary, we will assume that 7y, = 7 is the projection on the
z-axis. Let n € N and take m > 2n? and by Corollary 2.5 pick Q € D, such that

Ny (g (F) N1 Qo) > 27w,

Let P,,, denote the partition of the unit square into congruent tubes of width 27™
and height one. Note that by the definition of the Assouad dimension, the set
(Yo (F) N Qo) intersects at most om(nt3) dyadic intervals of length 27™ and there-
fore, 1o (F N Q) intersects at most 2"+ %) tubes of width 2-™. By the pigeonhole
principle, there is P, € P,,, such that

Ny (ho(F) N P,) > 2me=1=3),

Now apply Corollary 2.4, witht = s — 2, s =¢ — L and k = ¢ = n to find a dyadic
cube ), € D, for 0 < p < m — n, such that

(2.4) Ni(tg, (o(F) N P,) N Q) > 2861w,

forall 0 < k < n. Note that 1, (P,) is a tube of width 2=(m?) < 27" 50 by passing
to a subsequence, there exist compact sets £ € Tan(F) and A C E and a point
xr € w(E), such that ¢, (Vo(F)) N Qo — E and g, (Vo(F) N P,) NQy - A C
7~ !(xz) N E. Therefore, by (2.4) and Lemma 2.2,

dimg (7 ()N E) > s —1n.

Using Proposition 1.1 to pass again to a weak tangent of 7~ '(z) N E yields the
desired result for Hausdorff dimension. O

3. WEAK DOMINATION IN MATRIX SEMIGROUPS

Let M, denote the space of 2 x 2 real matrices and GL, denote the group of
invertible matrices in M,. Let Z be a finite index set and let A = (A4,;);cr be a
tuple of matrices in GL,. In the theory of self-affine sets, the action of the matrix
semigroup generated by the tuple of the linear parts of the affine maps in the IFS,
plays an important role. In this section we describe this action in detail for weakly
dominated matrices.

When studying matrix semigroups arising from affine IFSs, it is often useful
to phrase the results with respect to the underlying symbolic space. We call the
symbol & the empty word and let A, = Id. For n € N, let Z" denote the words of
length n generated by Z and 7* = | J,~ , Z" denote the collection of all finite words,
where Z° = {@}. We call (Z) = Z" the symbolic space associated with Z. If 7
is clear from the context, we may drop it from the notation and simply use the
notation X for ¥(Z). We use the notation i for words in both Z* and ¥(Z), that
is i = dyig-- -4, and 1 = 413y - - -, respectively. For i € 7* we denote by |i| the
length of i, which is the unique integer n, such that i € Z". For i € X(Z) and
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n € N, we let i|,, := 4yiy - - - 1, denote the restriction of i onto the first n symbols.
For i =iyiy-- -4, € I*, welet i™ = iyiy - - - i,,_1. Given any collection of functions
(F})iez or real numbers (a;);cz, we denote for i € 7%,

Fi:—F’ilo—F’iQO”'OF’i

Ai = A4y Ay~ * - Gy

n?

nt

For a matrix tuple A we let

R(A)={Ac{cA;:ceR and i € Z*}: rank(A) = 1}.
For us, there are two important sets of directions in RP!, namely the sets
Yr(A) = {im(A) € RP': A € R(A)},
Xp(A) = {im(4) €e RP': A € RA™ ")},

where A™! = (A4;');cz. We call these sets the forward and backward Furstenberg

1

directions, respectively. It is immediate from the definitions that Y(A) = Xp(A™1).

3.1. Dominated matrices. Recall that A is dominated if there exist constants
0 < 7 < 1and c > 0such that

as(A;) < CTmOél(Ai),

foralli € 7*. By [ ], this is equivalent to the existence of a strongly invariant
multicone C C RP', meaning that C is a finite union of closed projective intervals
satisfying A;(C) C C°, foralli € T.

The Furstenberg directions for dominated tuples have a useful symbolic repre-
sentation which we describe next. For A € M,, we denote by a;(A) > as(A) the
singular values of A. Formally, these are the square roots of the non-negative eigen-
values of the positive definite matrix AT A, and geometrically, they correspond to
the lengths of the semiaxes of the ellipse A(B(0, 1)). The right singular vectors of A
are eigenvectors 7, (A) and ny(A) of AT A corresponding to the eigenvalues a; (A)
and ay(A), respectively. If a;(A) > as(A), which is the case for all matrices in the
semigroup generated by a dominated tuple, then these vectors are unique up to a

change of sign. For i € Z", we write i = i,i,,_1...7;, and

Al = (Ag) T =A AL

1

We emphasize that A;" = A;"--- A;" denotes the inverse matrix of A;, so in
general, A;' # ATi_l. For i € T*, we let

V1(1) = (Aim (Ay))
Ja(1) = (AL m(AL)),

where (v) € RP' denotes the line spanned by v € R?. The geometric interpretation
therefore is that ¥, (1) and ¥J,(1) are the lines spanned by the longer semiaxis of
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the ellipses A;(B(0,1)) and A-'(B(0,1)), respectively. For i € ¥ and k € {1,2},
we define

Ir(1) = lim 9 (i]n),
n—oo
whenever the limit exists. It turns out that for dominated tuples, the limit aiways
exists and the convergence is uniform, which means that one can think of ¥, and
¥, as projections from the symbolic space to Yr(A) and Xr(A), respectively. The

proof of the following lemma can be found, for instance, in [ , Lemmas 2.2
and 2.3].

Lemma 3.1. If A is dominated and C C RP' is a strongly invariant multicone for A, then
fork € {1,2}:

1. the limit V(i) = lim,,_,oo Vx(il,) exists for every i € ¥ and the convergence is
uniform;
the map < I(i): ¥ — RP' is Holder continuous;
the set J),(X) is compact and contains the accumulation points of {0,(i): i € T*};

Aﬁ()zﬁ( j)and Ac "95(3) = V2(i]), forall i € T* and j € %,

Yr(A) = 0, (2 )CC°andXF( ) = U5(X) C RP*\ C.

ARSI

Another useful property of dominated tuples is that the singular values of the
matrices in the semigroup are determined by restricting the matrices to suitable
subspaces. The next lemma follows from [ , Lemma 2.8] by observing that
Xp(A)E =Yp(AT).

Lemma 3.2. If A is dominated, then there exists a constant D > 1 such that
[A:[Y]] < a1(As) < DIJA; Y]],

foralli € ¥ and Y € Yr(A). Furthermore, if V. € Xp(A) and i € X is such that
V = 105(1), then

DM Ag VI < aa(Ag) < AV,
foralln € N.

3.2. Weakly dominated matrices. For our purposes, a slightly weaker variant
of domination is sufficient. We call a tuple A = (A,;);cz strongly conformal if there
exists a conjugation matrix M € GL, such that foralli € Z,

Ai = G,Z‘MOZ'M717
for some 0 < a; < 1 and O; € Oy, where O, denotes the subgroup of orthogonal

matrices in GL,.

Definition 3.3. We say that A = (A,);cz is weakly dominated if it can be decomposed
into two sets A, and A;, such that A, is strongly conformal and A, is non-empty
and has a strongly invariant multicone C such that AC = C for all A € A..
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By a suitable change of coordinates determined by the conjugation matrix A,
we may assume without loss of generality that each A; € A, is of the form «,;0;,
for some 0 < a; < 1 and O; € O,. It was shown in [ , Corollary 2.5]
that domination can be restated in terms almost multiplicativity of the associated
semigroup in the following sense.

Lemma 3.4. A tuple A is either weakly dominated or strongly conformal if and only if
there exists a constant C' > 0 such that

ClANA; I = 1Az 11 < AslI1A; 1]
forall i,j e I~

Next we will show that the Furstenberg directions of a weakly dominated tuple
A are determined by a canonical dominated tuple A. The ideas are essentially from
[ ], but we rewrite them with somewhat different notation more suitable
for our purposes. For the remainder of this section, fix a weakly dominated tuple
A= (Aj)iczandletZ, ={i€Z: A; € A.}andZ, = {i € Z: A; € A,}. We define an
equivalence relation on {jii € Z*: i € ), j, i € Z;} by saying that jii111 ~ j2iois
if and only if O;, = Oj, and O;;, = O;,. We denote the equivalence class of
jii under this equivalence relation by [jii| and the collection of all equivalence
classes by A. It follows from [ , Theorem 2.1 and Lemma 3.7] that the sub-
semigroup generated by the set {O;: i € Z.} is finite and therefore A is a finite set.
Note that for any A = [jii] € A the matrix

ZA = OinOi,

is well defined.

Every word i € Z* \ Z} can be uniquely decomposed as i = i¢ijigis - - - ik,
for some k € N, where i; € Z} and i; € 7, for all j = 0, ..., k. Therefore, we may
define a mapping i — [i] from Z* \ Z; to A* by setting

(1] = [i0i111])[@izis] - - - [Sigin].

Given [i] € 7\ Z}, we set
Z[i} = Z[ioilil]z[ﬁigiﬂ e 'Z[Qikik}
— OioAilOilAiinl e AilOil
1

(igQiy * - Ay,

(3.1)

Ay

The following lemma is immediate.

Lemma 3.5. Forany i € T* and any subspace V of R?, we have

[AsI VI [[Ag V]

fork=1,2.
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Proof. It follows from (3.1) that

— — 1 1
on(Apu) = [[Aull = A} = - an (Ay),
. . | iy 777 ik| |aioail" 'aik|
- 11 1 —1y-1 1
ar(Ap) = [[Ay || = ———— A7 = (A,
) = [ 4 (Gagta, - and| (anoan, - |
and that for any v € R?
— 1
[ Al = T——— [l Asv]l;
|aioail" 'aik|
so the claim follows by the definition of the operator norm. O

Next we show that that the matrices indexed by [i] for i € Z* \ Z} generate the
same semigroup as matrices indexed by A*.

Lemma 3.6. Forany X € A*, there exists i € T* \ I} such that
Ay = Ax

Proof. Let X = [j1i1i1][jolioda) - - [jrixik] € A* be arbitrary, and write i =
jri1iije - - ig—1jkikig. Then recalling (3.1),

ZA = Z[jlilil]z[hiziz} e 'Z[J’kikik]
= ()j114i1()i1()j214i2()i2' "()jkf4ik()ik
= ()j1/4i1()i1j214i2()i2j3 -0 fiik()ik
= A

ig—1Jk

as claimed. ]

Now let

A= (A)\))\EA~

The next proposition shows that Ais dominated and that the Furstenberg directions
of A are determined by A.

Proposition 3.7. If A is weakly dominated, then A is dominated, Y.(A) = Y (A) and

Xr(A) = Xp(A).

Proof. In the proof of [ , Proposition 2.3] the authors show that the
strongly invariant multicone for A is also strongly invariant for A.

We next show that Y(A) = Yi(A). Let Y € Yy(A) and (by definition) find
a sequence ¢, A;, — A, with ¢, € Rand i, € 7%, where A is a rank one linear
map with im(A4) = Y. We first observe, for all sufficiently large n, that i, €
Z* \ Z}. Suppose for contradiction that, after passing to a subsequence, i, € 7}

for all n. Then each A;, is a constant multiple of an orthogonal matrix, and
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thus | det A;, | = || A;, ||>. Moreover, since the operator norm and determinant are
continuous functions from M, to R,

|det A| = lim |detc,A;,| = lim |c,|?|det A;, | = lim ||c, Ay, ||* = ||A]]* > 0.
n—oo n—oo n—oo

Therefore A has rank two, which is a contradiction. Now by recalling (3.1), we
may write

k
(cn H aij> Z[in] =c,A;, > A,
j=1

so by definition, Y € Xr(A).

For the other inclusion, take Y € Xx(A) and again find a sequence c, Ay, — 4,
with ¢, € Rand A, € A*, where A is a rank one linear map with im(A) =Y. Apply
Lemma 3.6 to find words i,, € Z* \ Z; such that Ay, = Ay, for all » € N. Then by
(3.1),

kc—nAin = an[in] — A,
Hj:l ai;
soY € Yr(A).
Finally, if A is weakly dominated, then so is A~! and clearly A-T = A '. There-
fore Xp(A) = Yr(A1) = Yp(A ') = X5 (A). 0

Combining Lemmas 3.5 and 3.6 and Proposition 3.7 gives the following analogue
of Lemma 3.2 for weakly dominated matrices.

Lemma 3.8. Suppose A is weakly dominated. Then there exists a constant Cy > 1 such
that

[A Y]] < an(As) < Gy As Y],

foralli e T*and Y € Yr(A). If V € Xp(A), then there exists a sequence i,, € Z* such
that A; |V € Xp(A), and

CrHl AL VI < 0a(As,) < [[As [V,
for all n € N. Moreover, we have

lim a2 <Ai")

=0.
n—00 (Y1 (Ain)

Proof. The lower bound in the first claim and the upper bound in the second
claim are trivial. Let us start by proving the upper bound in the first claim. Let
i € I*. If i € 7}, then the claim is trivial since A; is a constant multiple of
an orthogonal matrix. Therefore we may assume that i € Z* \ Z?. Since A is
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dominated, by the first claim in Lemma 3.2, there exists a constant C' > 1 such that
for all [i] € A%,

< aldy) o
A Y]
for all Y € Yg(A). Therefore the first claim follows by Lemma 3.5 and Proposi-
tion 3.7.
On the other hand, by the second claim in Lemma 3.2, for any V' € Xp(A) =

Xr(A) we may choose a word A € X(A) such that

for all n € N. Apply Lemma 3.6 to find words i,, € Z* such that A, = ZW

for all n € N. The second claim then follows from Lemma 3.1 (4), Lemma 3.5
and Proposition 3.7. Finally, since A is dominated,

: Ay g (A—)
fim ©20A8) o elen) o SIS
n—o00 (/] (Aln> n—o0 (y; (A[ln}) n—00 (yq (Am
which is the last claim. O

We recall that a matrix A € M, has rank one if and only if there are v € im(A4) and
w € ker(A) such that A = vw'. It is then easy to see that

A (v, w>7r§r((f)), if A2+£0
[ollllw]| Reraye  if A% =0,

where R is a rotation by angle 7/2; see, for instance, [ , Lemma 2.1]. By
[ , Lemma 3.2], for weakly dominated tuples A, if A € %(A) is arbitrary,

ker
im(

then A? # 0 so in particular A is of the form x7

(AA)), for some s € R. Let us record
one final lemma.

Lemma 3.9. Forany V € Xp(A) there exists k € R and a sequence j;, € I* such that
|Jk| — oo and

A
HAjk — mr¥,

il

in the topology of uniform convergence, where Y € Yr(A).

Proof. Let V € Xr(A) and apply Lemma 3.8 to find a sequence i,, € Z* such
that

CrH[As, V| < 0n(As,) < [[As, [V,
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foralln € N and

. 042(Ai )
1 = = 0.
A Ay 0
Noting that
Ai i Zi
‘det n | = |detA;| _ M) 0,
[As, | [As 7 an(Ap,)

and that ||A;,[|7'A4;, € {A € My: ||A|| = 1}, which is a compact set, by possibly
passing to a subsequence, we find a sequence j;, = i,, such that |[A;,['A4;,
converges to a rank one matrix A with Y = im(A4) € Yr(A). Moreover, for any
v € V,we have

HAij a2(Aj )
<C “o|| — 0,
T, < Caga,) I

so the kernel of the rank one limit map is V' and the claim follows. 0

4. SLICING SELF-AFFINE SETS

In this section, we study planar affine IFSs (7});cz, that is for every i € Z, T;(z) =
Az + b, for some A; € GLy and b; € R?. The attractor of (7});c7 is denoted by
K. We abuse terminology slightly by saying that K is weakly dominated if the
tuple A = (A;);ez of the linear parts of the associated IFS is weakly dominated.
Since in this section A is always the tuple of the linear parts of the IFS, we denote
the forward and backward Furstenberg directions of A simply by X and Y5,
respectively.

The following result is the main goal of this section, and makes up the majority
of the proof of Theorem B. For the reader less familiar with matrix products, we
have also included a proof of this result for diagonal systems in Appendix A which
still captures the essence of the pigeonholing argument.

Theorem 4.1. Let K be a weakly dominated self-affine set. Then the function V
dimp 71 (K) is constant on X p. Moreover, if ) denotes this constant value, then for all
Ve Xp,

dimy K =n+ sup sup  dimy (7,1 (z) N E).
E€Tan(K) zem,, | (K)

We start the proof with a sequence of geometric lemmas.
4.1. Geometric lemmas. For the remainder of the paper, for V € RP', we let
ey denote the unique unit vector in V' with positive z-coordinate if V' is not the

y-axis, and otherwise we let ey = (0, 1). Going forward, for any = € V € RP' and
W € RP!, we let

Tw = (x,ey)ew.
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Similarly, for any subset E C V € RP' and W € RP', we let
EW = {ZEW: S E},

that is Ey is a similar copy of E on W. If z € V € RP', then for any 2 x 2 matrix
A, we have

Az = £|| AV ||z av,

where the sign is positive if Aey has the same direction as e4y and negative
otherwise. In our arguments, namely in the proof of Theorem 4.1, we only need to
consider the matrices A; restricted on a direction Y which we fix in the beginning.
Since our arguments rely on pigeonholing and since in any collection of linear
maps, at least one half of the maps have a common sign in the equation above, to
simplify the situation slightly, we will assume without loss of generality that,

As[V () = [[A[V ][z av

foralli € Z7* and V € RP',
Using this assumption, we observe that if a planar set is close to a subset £ of
a line in R?, then its image is close to a scaled and rotated copy of E.

Lemma4.2. Let E CY € RP' and let B C R*. If py(FE; B) < ¢, then forany i € I,
P (1A Y[ Eayys As(B)) < [|Aslle.

Next we see that when restricted to nearby lines in Y}, all matrices in the semigroup
generated by A have contraction ratios uniformly close to each other.

Lemma 4.3. If A is weakly dominated, then there exists Cy > 0 such that the following
holds: For all Y1,Y> € Ypand i € T%, if

sin £(Y7,Ys) < Cae,
forsome 0 < e < 1, then
[As V] = | AslYall] < e[| As Y3 .

Proof. Assume without loss of generality that || A; |Y3]| > || A;|Y2]|. Let Cy = ﬁ,
where (] is the constant of Lemma 3.8. If

SIHK(YD}/Q) S 0267
then it follows that ey, = ey, + v, for some v € R?, with ||v] < & By Lemma 3.8
[AIYL] = [|Aey; || < [[Aexs[| + [[Av]] < [[Aeys | + [|A[[[0]] < [JA[Yz]] + el AJY2 ],

which gives the claim. 0
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The following upper bound for the angle between images of lines in Y} is immedi-
ate by combining Lemma 3.8 and [ , III Lemma 4.2].

Lemma 4.4. If A is weakly dominated, then there is a constant Cs > 0 such that for all
V.W € Yrand i € T7,

@2(Ai)
aq (Ai)

L(A VA W) <Gy

The next lemma is a trivial consequence of the fact that there is a unique way to
decompose any = € R* as the sum of vectors in V, W € RP' with V # W given by

r =y (z) + ().

Lemma 4.5. Forall x € R?, V,W € RP!, with V # W and i € T*, we have

T (Asz) = |A|V]Im) () 4.

Finally, an elementary geometric argument shows that projections along the di-
rections in Yp of well separated sets on lines in the directions of Xy are well
separated.

Lemma 4.6. Let A C V € Xy bea (1+ 22 )r-separated set, where § = £(Xp,Yp) > 0,
and for each a € A, let £(a) € B(a,2r) C R Then for any Y € Y, the set

Ty ({&(a): a € A}),

is r-separated.

Proof. Since A C V, nl,(A) = A. Moreover, for any Y € Yr and a € A, the
set i, (B(a, 2r)) is an interval of width 2(sin £(V,Y))~*r < 2(sin §) ~'r centred at a.
Therefore,

2 2
— > — =
-l = (14 25 )r- 2o
forany a,b € A. O

4.2. Product structure of weak tangents. We are now ready to prove Theorem 4.1.
The main part of the proof is in Theorem 4.9, which gives a slightly stronger result
than just the lower bound in Theorem 4.1, namely that the Assouad dimension is
attained by a coarse microset which is a product set. Before proving this theorem,
let us observe that the map V' — dimy 7. (K) is constant on Xp.

Proposition 4.7. Let K be a weakly dominated self-affine set. Then
dimA 7TWJ_<K) = dimA Ty L (K)

forallV,\W € Xp.
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Proof. Let V,W € Xp. It suffices to show that

dimp o (K) > dimp 7y 1 (K).
By Lemma 3.9, there exists a sequence jj, € Z* such that |j;| — oo, and

A |4
— R
||AJkH o

in the topology of uniform convergence, where Y € Y. Note that xmy (K) is
bi-Lipschitz equivalent to . (K), so in particular dimp 7y (K) = dimp 72 (K).
Thus for any s < dim 71 (K) and C' > 0, we may choose a point x € ry- (K) and
a collection A C kmy (K) N B(x, R) C Y of 3r-separated points with

#Azo(ﬁf.
r

Let § = £(Y, W) > 0 and take k sufficiently large so that

— kmy (z)|| < rsiné

[

for all z € R. Therefore, by translating K if necessary we find for each a € A a
point z(a) € K such that

lz(a) = all Az, [l < r{lA;, | sin .
Of course, my . (A) is 3r sin d-separated and therefore the points

B = {my.(z(a)): a € A},
form a r||A;, || sin 0-separated subset of 7y, (K) N B(myL(x), R|| Ay, | sind) with

RHAMH)
B=#A>C
#E=#AZ ( Ay,

Since this holds for all C' > 0, by the definition of the Assouad dimension, we have
dimp my o (K) > s

and since s < dimy 71 (K) was arbitrary, we are done. O

Remark 4.8. It is possible to calculate the constant value n = dimy 7y . (K) in the
proposition above in some situations. If K is a self-affine carpet, then the set X is
a singleton consisting of the direction with the strongest contraction ratio. In this
case, the projection of the IFS along this direction is a self-similar IFS on the line

and therefore, by [ 1, n = dimp 7(K) if the projected IFS satisfies the weak
separation condition and n = 1 otherwise.
On the other hand, for general self-affine sets, it is easy to see by using [ ,

Lemma 6.4] that in the absence of a projective separation condition, which is similar
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(A) The initial pigeonholed cylinders. (B) The image of the configuration.

FIGURE 1. Depiction of the proof of Theorem 4.9. In Figure 1a, we
see the initial pigeonholed collection of cylinders (and large pieces of
the projections) corresponding to an approximation of a slice of a large
weak tangent. In Figure 1b, we see the image of this configuration
under an appropriately chosen affine map after locating an improved
scale with Corollary 2.4.

in spirit to the open set condition, we have that n = 1. Moreover this projective
separation condition is generically, in a topological sense, not satisfied by self-
affine sets satisfying the strong separation condition. Formally, it was shown in
[ , Theorem 3.6] that for a given collection of linear parts (4;);cz, there is a
residual set—a countable intersection of sets with dense interiors—of translation
vectors (t;);ez, such that the IFS (x — A;x + t;);cz does not satisfy the projective
open set condition. Characterizing the projections in a similar fashion to the carpet
setting would be of interest but we do not pursue this further in this work.

We now move on to the proof of our main result. Let us begin with an informal
overview of the strategy, see Figure 1 for an illustration. We begin by discretizing
a given slice of a weak tangent in a backward Furstenberg direction, and attach to
each point in the discretized slice a copy of (an approximation of) a weak tangent of
the projection using the self-affine structure. These copies are depicted by the short
lines in the ellipses in Figure 1a. Unfortunately, the individual approximations
of weak tangents of the projection need not line up at all, and since the Assouad
dimension can be substantially larger than the Hausdorff dimension, this will
cause loss in dimension. By pigeonholing (with constants depending on the
resolution of approximation of the large weak tangent of the projection), we can
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find a sub-family which has substantially improved alignment properties (the
dark ellipses in Figure 1a). However, the corresponding component of the slice
corresponding to this pigeonholed sub-family could be substantially smaller at
the original scale. In order to amplify this configuration, we apply the discretized
version Furstenberg’s construction of large microsets (that is, Corollary 2.4) in the
slice to locate a new scale where there is no loss in dimension. Here, it is important
that the initial configuration is a very tall and narrow tube, with eccentricity
sufficiently large depending on the constants in Corollary 2.4 and the resolution of
the weak tangent in the projection so that the pigeonholing and amplification step
do not flatten the tube beyond being a square. Of course, since Corollary 2.4 does
not guarantee a precise scale at which the improved configuration appears, this
amplification process could still result in a very thin tube. Finally, we use the fact
that the slice is in a backwards Furstenberg direction and apply an appropriate
high iteration 7; of the affine maps to squash this tube to a square, see Figure 1b.
Passing to the limit yields a weak tangent with the desired product structure.

Theorem 4.9. Let K be a weakly dominated self-affine set, VW € Xp, E € Tan(K)
and x € my 1 (E). Then there are compact sets A, B € R with dimg A = dimy 7wy (K)

and dimg B = dimy (7} () N E) such that A x B is a coarse microset of K.

Proof. Let VW € X, E € Tan(K) and = € . (E). Write
n = dimp my (K) and B = dima (7} (z) N E).

First, in the same way as shown in Proposition 4.7, we may use Lemma 3.9, to find
a sequence ji € Z* such that |j;| — oo and

A
li Jk w
Foo IlA - Y

el

for some Y € Yr. Moreover, recall that
dimy kmy! (K) = dimy mpo (K) = 7.

To simplify notation, let us assume that xk = 1. We begin start by constructing
approximate copies of the thickest parts of 7}’ (K) inside the self-affine set K. Let
m € N. Going forward, most of the choices we make depend on m, but to simplify
notation this dependence is often left implicit.

First, by Corollary 2.5, choose ke N,scales0) < r=2"6+m <« R=2"%and a
point z € 7}/ (K) such that P,, .= m}/ (K) N B(z, R) satisfies

L T
for all 0 < n < m. Now choose k € N large enough such that the word j = j;

satisfies

1
< —R,
m

H 1451l
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for all z € R*. Note that Tj(K) — T;(z) = A;(K — z), so the previous equation
implies that

(4.2) . (Pm—x'Tj(K)_Tj(;,;)> S%

B4R

Next, set

31 _ —lo-1,
M 8rm?(1 — C} C‘ Otmin)
- Cs|Ay||R? sin §

where § = £(Xp,Yp) and opin = miner a1(4;). Using the definition of the As-
souad dimension, find scales 0 < ry < Ry < 1, with Ry > 2™m*+k)r a point
20 € ;. (z)NE and a finite set Ay C 7, (x) NENB(z9, Ry) of (1+ =25 )ro-separated
points, satisfying

Ay > AM (R)

To

Since F € Tan(K), there exists y € K and A > 1 so that

d?—[()‘(K - y) N B(07 1)7E) < 50

Choose /,,; € Nmaximal and ¢,, » € N minimal, so that
27fm2 < Xl < ATIRy < 270,

and let r; = 272 and R, = 27“»'. Now, since the points in A are (1 + 25 )ro-
separated, by the choice of £, 5, the points in A™* A + y are (1 + -25)r-separated.
Moreover, for each a € A™' Ay + v, there exists £(a) € K N B(a,r;). Let us denote
by A= {{(a): a € N1 Ay + y}

For each y € A, let i, € Z* satisfy a;(A;,) < < Ozl(Ai;) and y € T}, (K).
To simplify notation, write z, = T; j(z). Since each T} (K) has diameter at
most r; and the set A is a subset of a 2r;-neighbourhood of a line in direction
V, we have diam(ny (U, 4 T3, (K))) < iri Additionally, diam(RP') = I and

sind ® 2
CiC apry < |A;, Y]] < ry, where C and C) are the constants of Lemma 3.4

and Lemma 3.8, respectively, so by the pigeonhole principle there is a line Y,,, € Y5,
a real number w,, € [C; 'O am, 1] and a subset By C A, satisfying

-1 B—L p—L
#Bozﬁ#Azzl(ARo) z(&) :

A 1T0 1

such that the following inequalities hold for all y, z € By:

(4.3) sin £(A;,Y,Y,,) < Cgim
A R
(4.4) I (@, — )| < JAlEn ” r
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45) 1A [V = wnre| < 572
2m

Here, C5 > 0 is the constant of Lemma 4.3. Since diam(7}

iew (K)) < 11 for any
a € N Ay + y, we have

Te(a) € B(a,2ry),

so by applying Lemma 4.6, we see that the set

B = {ﬂ&m(asy): y € By},

is an ry-separated subset of V.

Now, since the choice of r; and 7“2 implies that U — Uy > m(m + k), we may
apply Corollary 2.4 withs = f — 2t = f — L ¢ =mand k = m + k to obtain a
subcollection B,, of B with B,, C B( (L), R’) for some z € By and R’ = 27/
with 0,1 < ¢, < {,,» —m — k such that

(4.6) Ny, n(By) > 27065,

forall0 <n <m.
Next we will construct the coarse microset. By Lemma 3.8, we may choose a
sequence i; € 7* such that

Cl_l||A1J|VH < a2(Aij> < ||A1]’VH7
for all j and

1A V] < az(Ay;)

— 0.
[As; [Yol| = a1 (As))

Therefore, we may choose j to be the smallest number satisfying

1A V]

e < || 4
Il < 4
and note that then by Lemmas 3.4 and 3.8
HAij|VH 1,—1 2” il AVl 11 2 !
[ N Y e

Therefore, by possibly passing to a subsequence, we may assume that

[As, [VI[R
1A [ Bl Ag; [Yon [

B = — h,

with h € [(C;'C'am)?,1]. Let us denote Y/, = Ay Yy and YV, = A; ;Y.
Lemma 4.4 implies that for all y € A,

: az(As)) A, V]
47) LY. Y, <C—" <ol Lo
wm) ar(Asg) T (A Yl

< O A; HR < C||44]127™R.
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In particular, we certainly have sin £(Y},, Y, ) < -, for all large enough m. More-
over, by Lemma 3.8, V,,, .= A; .V € Xp and therefore, passing to a subsequence if
necessary, we may assume that there are V' € Xy and Y’ € Yy such that V,, — V'
and Y, — Y’. Now (4.4) together with Lemma 4.5 shows that

W}‘Q'LAij (zy — z2)

[A3 | Rl Ag; [Yon [

_ A Yl (2 — z2)|

<
A3 [ B[ Ag; [Yon I

1
-

Since v = my7 (7) + 71")//:% (z) for any = € R?, the previous equation gives

H () ~ T, () W‘gm(xy —Z2)v,,
|| A; HR||A1]|Y [y " R
Aij(xy - 3‘32) - HAijl‘/HW%//m (l’y - wz)vm
| A;5]|R|| Ay, Yo r1
M Ay (zy — 1) — T Ay (w, — 7.)
[ A5 R|| Ay, Yoy

(4.8)
7ry, Ay, (zy — )

A3 Bl Ag; [Yon [

<

1
<.
m

Since for any A, B € GLy, and Y € RP' we have ||AB|Y| = ||A|BY ||| B|Y|, by
(4.5) and Lemma 4.3 together with (4.3),
Y| = | Ag; [Yon |7y

ily

1488, 1Y 1] = | As, [Von Iy

= (145, [¥5.mllA

(49) < |1As, ¥yl = 1 As ol sy 1Y 1+ [ Asy, 1Y) =

[ A [Yonl

ily

1
< — [ A [Yin |7
m

and again by passing to a subsequence if necessary, we may assume that w,, — w
for some w € [C;7' O oygin, 1].
Let now

(Bun — my" (2:))
= 7 and B, = i
and recall that P,, C B(z, R) and B,, C B(m"(x.), R'), so A,, x B,, is a compact
subset of B(0, 1). Therefore, passing to a subsequence, get a compact set A x B such
that A,, x B,, = A x B in the Hausdorff distance. By (4.1), (4.6) and Lemma 2.2,
we see that dimp A > n and dimp B > f.

Finally, let us show that A x B is a coarse microset of K. Let f,,: R* — R be
the unique linear map taking the vector (1,0) to wy,ey, and (0,1) to hyey,,, and
let f: R* — R? be the unique linear map taking the vector (1,0) to wey- and (0, 1)
to hey-. Clearly the function f is bi-Lipschitz, f,, — f in the topology of uniform
convergence and f,,(A,, X B,,) = f(A x B) in the Hausdorff distance. Moreover,

(P — %)y (B — my" (2:))v;
"t P m
R R

Jfm(Ap X Bp) = wy,
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Therefore, to finish the proof it suffices to show that

BT )
[ TR ol )~

(4.10) lim py (fm(A X Bp);
m—00
Note that for each 7" (z,,) € B,
(P — x)Yn/q ﬂ-gm (xy —Z.)v,, . (P — aj)Y,éb W\E;m (zy — 22)v,,
By combining (4.2) with Lemma 4.2, and recalling that 2, = T} ;(z) and w,, <1,

Dy (wm (Pm — x>Yy,m. Tijiyj(K> - Tij (xy)) < Cy

; Wm =~
R [A;5]| BR[| As,s, [Y]] m

and by (4.9),

dH< Tyjs,3(K) =Ty, () Tijiyj(K)—Tij(my)) <1
[A ([ Rl As,a, [V AR As [Yin [y ) m

Since sin £(Y,), Y, m) <

and P,, € B(z, R),

1
m

(Pm — I‘)y/ (Pm - l’)y, 1
d m y,m < _
H (wm R y Wm R = m
which together with the previous two inequalities imply that

D < (P — x)Yn’q. Tijiyj<K) - Tij(%)) < Cr+ 2.

R 7 HAjHRHAij’YmHTl m
Finally by (4.8) we get
Dy ( (P — ) n 4R, Ym(xy_/xz)vm;Tijiyj(K> _Tij(x2>> < Cl+3.
R R [ A3 |RI[As [Yoal74 m
Since this holds for all y € B, (4.10) follows. OJ

The main theorem of this section follows immediately.

Proof (of Theorem 4.1). First, recall from Proposition 4.7 that the function V' —
dimy 7y1 (K) takes constant value 7. Therefore, applying Proposition A, it follows
that for all V' € Xp, there exists an £ € Tan(K') and an = € my. (E) such that

dimy (7, Hz)NE) > dimsy K — 1.

Conversely, by Theorem 4.9, for any V € Xp, E € Tan(K), and x € 7ij_( ), there
are compact sets A, B € R with dimp A = 7 and dimg B = dim (7, !(z)N E) such
that A x B is a coarse microset of K. Therefore by Lemma 2.1,
dimy K > dimpy A x B > dimg A X B > dimp A + dimg B
=1+ dimy (7,1 (z) N E),

which gives the lower bound. 0
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5. CONSEQUENCES AND EXAMPLES

5.1. Completing the proof of the main result. In this section, we complete the
proof of the main result, Theorem B.

First, let us note the following consequence of Theorem 4.1, using Proposition A.
This establishes the main result concerning Assouad dimension and slices of weak
tangents.

Corollary 5.1. Let K be a weakly dominated self-affine set. Then for any V € Xp there
exists F' € Tan(K) and x € w1 (F') such that

dlmH(W‘;i (Qf) N F) = dlmA(ﬂ";i (.73) N F) = dlmA K — dlmA TyL (K)

Proof. Let V € X and denote by n = supy,cx, dima 71 (K). Recall that by
Theorem 4.1,

dimy K =n+ sup sup dimy (7 '(z) N F).
Ec€Tan(K) VeXp
TET, 1. (K)

By Proposition A, there exists F' € Tan(K) and = € 7(F’) such that

dimy(7,} () N F) > dimy K — dimy my2 (K).

Moreover, by Proposition 4.7

dima (7} (#)NF) < sup sup  dimp (7 ' (z)NF) = dimpy K — dimy my 1 (K),
B€Tan(K) VEX{K)
l‘eﬂ'vl

and the claim follows. O

Finally, we use self-affinity and separation conditions to make conclusions about
slices of the original set.

We first note the following bound, which is a simple corollary of Theorem 4.1,
by the observation that a weak tangent of a slice of a compact set is contained
in a slice of a weak tangent of the set, see e.g. [ , Lemma 4.4] for the short
formal proof. This proves the part of Theorem B concerning the upper bound on
dimensions of slices with no separation conditions.

Corollary 5.2. Let (1;),c1 be a weakly dominated self-affine IFS with attractor K. Then
forall W € Xpand x € my o (K),

dima (7, () N K) < dimy K — 7,
where 1) is the constant value for the map V' — dimy my 1 (K).

Finally, we show that this bound can be upgraded to an equality for some slice
under a suitable separation condition which is slightly weaker than the strong
separation condition.
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Definition 5.3. Let K be a self-affine set. For x € K and r > 0, we let

O(z,7r) ={Ti: as(A;) <r < ay(A;-) and T3 (K) N B(x,r) # 0}.
We say that K satisfies the weak bounded neighbourhood condition (WBNC) if there
exists a constant M € R such that
#O(x,r) < M,
forallz € K and r > 0.
This following corollary completes the proof of Theorem B.

Corollary 5.4. Suppose (T;)cz is a weakly dominated IFS satisfying the weak bounded
neighbourhood condition with attractor K. Then there exists W € Xp and v € m(K)
such that

sup sup  dimy (7,1 (z) N F) = dimg (7}, (z) N K).
Ec€Tan(K) VeXr
IGﬂ'VL(K)

In particular,

1
dimy K =n+ max dimg (7,1 (v) N K),
zem, ) (K)

where 1) is the constant value for the map V' — dimy my1 (K).

Proof. By Corollary 5.1, choose F' € Tan(K), V € Xp and = € my 1 (K) such that

dimy(7y,} (#) N F) = sup sup dimp (7' (z) N F).
FeTan(K) VeXp

zem,, | (K)
By [ , Lemma 3.2], there exists a finite index set / such that
F=JF,
iel

where each F; is a compact set, and for each i € I, there exists a linear map
G, € %(A 1), and a point y; € K such that G;(F;) + y; C K. Let j € I be such that
dimg (| () N F;) = dimg(m, | (@ ) F). If G, has rank one, then im(G;) € Xr and
ker G ;é V and therefore G, ( (@) N E) 4y C im(G;) N K + y;, is bi-Lipschitz
equlvalent with 7} (z) N F;. ThlS gives the lower bound
(5.1) dinrlH(Wi;l(Gj)L
On the other hand, if rank(G,) = 2, it follows from [ , Lemma 3.3] that
G,V € Xp and since G is globally bi-Lipschitz,

() N K) > dimg (G;(my 1 () N F;) + yi) > dimg(mL (2) N F).

dlmH(ﬂ'( 1 Gz +y) N K) = dimy (G (7 JL(@)NE) 4 y;) > dimy(m,)| (z) N F),

which gives the claim in this case. O
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5.2. Dimensions of tubes and local dimensions. In Theorem 4.1, we established
a formula for the Assouad dimension of a weakly dominated self-affine set in
terms of the Assouad dimension of slices of weak tangents. We now show that
this also enables us to bound the dimensions of tubes.

We introduce some notation: for VV € RP! and z € 7y (R?), we denote the tube
with width 2 through z in direction V' by

T.(V,z) = 7" (B(z,1)).
We then set

. Suszﬂ’v(K) 1OgN7‘(7;‘(‘/7 Z)QF)
Ay (F)=1
V( ) lr?j(l)lp log(l/'r’)

Of course, in general,

sup dimg (7' (z) N F) < Ay (F).
zemy (F)

Conversely, the maximal value of Ay (E) over all microsets E is always attained
by the Hausdorff dimension of a slice of a weak tangent. Using Lemma 2.3, the
proof is essentially the same as the proof of Proposition A, so we omit the details.

Lemma 5.5. Let F' C R? be non-empty and compact and let V- € RP" be arbitrary. Write
10 = SUpgeg, Av(E). Then there exists an Ey € Tan(F) and an x € my(Ep) so that
H (7! (z) N Ep) > 0.

Since for all compact sets F' C R* we always have (up to rescaling and translation)
F € Gr and Tan(F) C Gp, the following corollary of Theorem B is immediate.

Corollary 5.6. Let (1;);cr be a weakly dominated self-affine IFS with attractor K and
let 1) denote the constant value of the map V' — dimu w1 (K) for V€ Xp. Then for all
Ve Xp,

dimy K —n = Eer’Il‘lg)((K) Ayi(E) > Ay (K).

If in addition (T;)cz satisfies the WBNC, then

dimy K —n = max Ay (K) = max :pewmﬁ}?K) dimy (7} (z) N K).

To conclude this section, let us explain how to extend and complete the results of
[[]17] using Corollary 5.6. Let us begin by recalling the setting and the main result
in [ ]. Fix numbers 0 < a < 8 < 1, and consider the self-affine IFS (7;);cz given
by T;(x,y) = (Bz, ay)+ (b;, a;) where 0 < b; <1—fFand 0 < a; < 1—a. We assume
that the IFS satisfies the rectangular open set condition: T;((0,1)*) N T;((0,1)?) = @
for all i # j.

Set m = #Z, and let ;1 be the unique Borel measure satisfying u(73((0,1)?)) =
m~* for i € Z*. Equivalently,  is just the self-affine measure on the IFS (T});cr
with equal probabilities.
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In our notation, X = {H} is a singleton and 7. = 7 is the orthogonal
projection onto the z-axis. Moreover, the rectangular open set condition implies
that the IFS satisfies the WBNC. Let (S;(z) = Sz + b;);ez denote the corresponding
projected IFS with attractor 7(K) and let v = p o 7! denote the pushforward
measure. Note that, in particular, v(B(z,r)) = u(7.(H, z)), for all z € 7(K).

We also recall the definition of the Frostman dimension:

dime, v = sup{t > 0:3C > 0Vr € (0,1)Vz € Ry(B(z,r)) < Cr'}.

Equivalently, dim, v is the slope of the asymptote of the L? spectrum at +o0, or
the infimum of lower local dimensions over all points z € supp v. The following is
a slightly weaker version of the main result of [F]17].

Theorem 5.7 ([F]17]). Let K be the self-affine set corresponding to the IFS (T;);cz de-
fined above, with parameters 0 < o < 8 < 1. Let s denote Frostman dimension of v.
Then

log m(*
log(1/a)’

Moreover, equality holds if any of the following conditions hold:
(i) dimpm(K) = 1.
(ii) The projected IFS (S;);cz satisfies the weak separation condition.
(iii) The projected IFS (S;);cz satisfies the exponential separation condition.

dima K < dimy W(K) +

Moreover, the conclusion under the assumption of the exponential separation
condition relies on the deep work of Shmerkin [ |; we also refer the reader
to that paper for a precise definition of the exponential separation condition.

We will use Corollary 5.6 to prove that the upper bound for the Assouad
dimension in Theorem 5.7 is in fact always an equality. The result will in fact
follow from the following simple lemma relating the size of tubes with local
dimensions. Similarly to the other notation, let 7,(z) = 7,(H*,2) denote the
vertical r-tube passing through x and write A(F) = Ay (F).

Lemma 5.8. Let K be the self-affine set corresponding to the IFS (T;);cz defined above,
with parameters 0 < o < 8 < 1. Let s denote the Frostman dimension of v. Then

_ logmp®
~log(1/a)

Proof. Let ¢ > 0 be arbitrary. Suppose z € n(K) and r € (0,1). Let n € N be
minimal such that o™ < r, and let

A(K)

(5.2) A, ={ieZ":Si(n(K))NB(z,r) # 2}
Since the IFS satisfies the rectangular open set condition and " ~ r,

N.(T:(2) N K) =~ #A,,.
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Now fix some rectangle T;((0,1)?) for i € Z" and note that by the self-affinity of 1,

M(ﬁ(z) N T1<K)) = m_n/l(ﬁgfn(Ti_l(z))) 5 m—n(a/ﬁ)n(s—s)'

Therefore
v(B(z,1) S N(To(2) N K) -m™™ - (a/B)")
< (") A | (o) EstiTe (o) e (am) e
_ (an)s—A(K)Hgg(T/f) ~2e—e I8 ‘

Since this holds for all z € 7(K) and r € (0, 1), by maximality of s,

log(1/a) log(1/a)

Since ¢ > 0 was arbitrary, the lower bound on A(K) holds.

Now to obtain the upper bound on A(K), again let ¢ > 0 be arbitrary. Fix
zen(K)and r € (0,1). As before, let n € N be minimal such that o™ < r, and let
A, be defined as in (5.2). Then for all i € A,

Si(K) C B(z, " +a") C B(z,20").
Therefore, recalling that #A,, ~ N,(7,(z) N K),

log mBS—¢
1\ tes(t/@)
No(Ti(2) N K) & A < v (B(2,26")) S m" 8" » (‘) ,
it follows that
A(K) < logmB°*
log(1/a)
Since € > 0 was arbitrary, the desired upper bound holds. ]

We finally obtain the desired result.

Restatement (of Corollary C). Let K be the self-affine set corresponding to the IFS
(T})icz defined above, with parameters 0 < o < [ < 1. Let s denote the Frostman
dimension of v. Then

log mf3*

dimpy K = di K)+ ————.
ima imy m(K) + log(1/a)

Proof. By Corollary 5.6 (recalling that X is a singleton and the IFS satisfies the
WBNC) and Lemma 5.8,

_ logmp®
~ log(1/a)

as claimed. ]

dimp K — dimp 7(K) = A(K)
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5.3. Dichotomy for the conformal Assouad dimension. To conclude our appli-
cations, we apply our results to calculate the conformal Assouad dimension of
a large class of self-affine sets. Recall that a function f: X — Y between metric
spaces (X, d) and (Y, p) is an n-quasisymmetry if

p(f(z), f(y)) d(z,y)
(@), f(z) =" (d<x,z>) /

for all z,y,z € X with z # z, where 1: [0,00) — [0,00) is a homeomorphism.
Quasisymmetries are generalizations of bi-Lipschitz maps which preserve relative
sizes of sets, while allowing sets of widely different sizes to be distorted in different
ways. Unlike bi-Lipschitz maps, quasisymmetries can decrease the Assouad
dimension which gives rise to the conformal Assouad dimension of X,

Cdimy X = inf {dim, f(X): f is a quasisymmetry} ,

which is of course invariant under quasisymmetries. We say that a set X is
minimal for conformal Assouad dimension if Cdima X = dimu X. We also consider
the conformal Hausdorff dimension, which is the same definition except with
Hausdorff dimension in place of Assouad dimension.

By combining a strong projection theorem for Assouad dimension due to
Orponen with Theorem 4.9, we are able to prove a dichotomy result for the
conformal Assouad dimension for a large class of self-affine sets.

Restatement (of Corollary D). Let K be a weakly dominated and irreducible self-affine
set. If dimp K < 1, then Cdimy K = 0, and if dimy K > 1, then K is minimal for
conformal Assouad dimension.

Proof. If dimpy K < 1 then [ , Corollary 5.1.11] implies that Cdim, K = 0.
Assume therefore that dimy K > 1.
Using Corollary 5.1, choose F' € Tan(K), V € Xp and x € 7. (F), such that

dimp K = dima my. (K) + dimg(m, | (2) N F).

Note that if dimy . (K) = 1 for any V' € Xp, since [0, 1] is a weak tangent of
my1 (K), by Proposition 1.1 combined with the Lebesgue density theorem, in this
case the proof of Theorem 4.9 actually shows that there is a compact set B with
dimg B = dimy(m,,} ()N F) such that [0, 1] x B is a coarse microset of K. Moreover,
applying Proposition 1.1 and passing to a weak tangent again if necessary, we
may assume that dimy ([0, 1] x B) = dims K. Since quasisymmetries cannot lower
the Hausdorff dimension of a product of a compact set with an interval [ ,
Proposition 4.1.11], it follows from [ , Proposition 6.1.7], that

Cdimy K > Cdimy ([0, 1] x B) = dimy ([0, 1] x B) = dim, K.

It therefore remains to show that there exists V' € X such that dim 7y (K) =
1. A theorem of Orponen [ ] shows that for any set £ with dima £ > 1, we
have

dimp{V € RP': dims 7y (E) < 1} = 0.
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It is easy to see (for example using [ , Lemma 2.7]) that weak domination
combined with irreducibility implies strong irreducibility, from which it follows
that dimy Xz > 0 [ , Corollary VI.4.2]. This gives the claim. O

For Corollary D to hold as stated, irreducibility is necessary: examples of self-affine
carpets with Assouad dimension greater than 1 but which are not minimal for
conformal Assouad dimension are given in [ ]. However, in these examples
the conformal Assouad dimension is 0, and we are not aware of any examples
of self-affine carpets with Assouad dimension greater than one which are not
minimal for the conformal Assouad dimension.
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A. PROOF OF THE SLICING RESULT FOR DIAGONAL SYSTEMS

In this section, we include a proof of Theorem 4.1 for weakly dominated diagonal
self-affine systems.

Let us set up the required notation. Fix a planar IFS (7});cz where for each i € 7
there are a;, b; € (0,1) and u;, v; € R so that

Ti(x,y) = (a;x + u;, biy + v;).

Let K denote the unique non-empty compact attractor and let {S;(z) = a;,x+u; }ier
denote the projected IFS on the 1% coordinate axis. Let 7: R* — R denote the
orthogonal projection 7(z, y) = x: then equivalently S; is the unique map which
satisfies S; o m = 7 o T;. Of course, {5, }c7 is a self-similar IFS with attractor 7(K).
We refer to such a system as diagonal. We assume that the IFS is weakly dominated:
in this notation, this means (without loss of generality) that a;, > b; for all ¢ € Z,
and a; > b; for some i € 7.
We now have the following special case of Theorem 4.1.
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Theorem A.1. Let (7});ez be a diagonal weakly dominated IFS with attractor K. Then

dimy K = dimy 7(K) + sup  sup dima(7 '(z)NE).
E€Tan(K) zen(E)

Proof. We recall by Proposition 1.1 that it suffices to prove the lower bound on
dim A K.

Let £ € Tan(K) and = € 7(FE) be arbitrary. For notational simplicity, write
n = dimy 7(K) and 8 = dima (7~ *(2) N E). We will show that dimy K > n+ § by
constructing a coarse microset G with dimy G > 1 + .

First, applying Corollary 2.5, get a sequence of dyadic cubes (P,,)>_, with
P,, € Dy,, satistying lim,,,_, k,, = 0o such that

(A1) Ny (0, (r(K)) N[0, 1]) 2 2(7=3%)

foralln € Zwith0 <n <m.
Now, fix an m € N. We begin by pigeonholing a good set of cylinders. Let
M € N be sufficiently large so that

M > (ka’”)2 (1= amin) - (8ap, - diamm(K)).

min

First, by definition of the Assouad dimension, gety € 7 '(z) N E, 0 <1y < Ry < 1
with Ry > 2m(m+km) .,y and a finite set of points Ay C E, which are 6rq-separated
with

1
#Ay > AM (ﬁ)ﬁ "
To
Since E € Tan(K), there exist z € K and A > 1 so that
dy (MK — 2z) N B(0,1), E) <.
Let ¢, € NU{0} be maximal and /,,» € NU{0} be minimal so that
2 tm2 < N\l < NTIR < 276ma,

Write R = 27%1 and r = 27%m2, Then for each a € Ay, thereis a £(a) € E such that
dAta+ 2, &(a)) < reAL

Let A = {{(a) : a € Ay}. We observe four key properties of A.

1. Since the points in A, are 6r(-separated, the points in 4 are 2r-separated.

2. By the condition on Ry /ro, we have (., 2 — {1 > m(m + k).

3. Since 5 —1/m <1,

o1 o1
A= Ay > AM (%) > M (?) .
0

4. Since A, is a subset of a vertical slice, A is a subset of a vertical tube of width
22" rg < A4r.
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Now foreachy € A, leti, € 7" be such that a; <r < a;- and (z,y;) € T3 (K).
Since the points in A are 2r-separated, the images T; (K) are disjoint for distinct
y € A. Moreover, writing S; (7) = u(y)r + v(y) fory € A, for all y, z € A, since
the points in A lie in a vertical tube of width 4r,

u(y)

v(y) —v(z)

<4-al -diam7(K).
,

min

€ [@min, 1] and

Thus by the pigeonhole principle and the choice of M, get u,, € [amin, 1], vm €
[0,4-a_i -diam7(K)] and B C A where #B > #.A/M such that for all y € B,

min

(A.2) <

<

_um

and ‘M

r

m2km m2km

Since the points in B are 2r-separated, each y € B intersects a distinct vertical
dyadic interval of width 272, On the other hand, B intersects at most 2 dyadic
intervals of width 2741, Thus pigeonholing again, get &,, C B so that

os
48, > (5)

r

and moreover &, is contained in a single dyadic interval ), of width 271, Finally,
since (., 2 — U1 > m(m + ky,), by applying Corollary 2.4 to the set ¢, (&) N [0, 1]
withs =3 —2/m,t = —1/m, { = m, and k = m + k,,, get a dyadic interval
Qm € Dy, with 0,1 < ¢, < {,, 2 — m — k,,, such that

(A3) Ny (g, (En) N[0,1]) 2 20~

foralln € Zwith 0 <n <m.
We now construct a coarse microset G with dimy G > 7 + (. First, for each
m € N, set

g () = r(Upmx + V).

In light of (A.2), one should think of the function g,, as an approximation for the
functions S;, for y € &,,. Next, we set

Fm = gm(Pm N W(K)) X (Qm N gm> and hm — 2_k1’n_zm,2.

Note that g,,(P,,) is an interval of width u,, - h,, and @,, is an interval of width
27tm > 2mp,.. Since (T});cr is weakly dominated, get iy € Z such that x == b;,/a;, €
(0,1). For each m € N, let j,, € Z be maximal such that

l{jm 2_€'m Z hm

Observe that lim,,, o jm = 0.
Now passing to a subsequence, we may assume that j,, > 0 for all m € N and
that the limits v = lim,,, .o U, and v = lim,,,_,~ v,, €xist. Set

E,=T/"(F,) and  wy,=al"h,.

20
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Of course, £, is contained in the rectangle

Ay, = Z{)nl (gm(Fm) X Qm)

which has width u,, - w,, and height k~'w,,. Let f, denote the orientation-
preserving diagonal affine map satisfying f,,,(A,,) = [0,1]?. Passing again to
a subsequence if necessary, we may assume that the limit

(A4) G = lim f,(E,)

m—0o0

exists.
We ftirst show that G is a coarse microset of K. Let m € Nand fixy € Q,, N &,..
Consider the horizontal strips

Xmy = 71%" (gm(PnN7(K)) x {y}),
Yoy = S 0 85, (P Nw(K)) x {T2" (y)}.

By (A.2),
1

1 .
—agg”Q’k’"’Z""Q = —W,y,.
m

~Y

d?—t (Xm,ya Ym,y) <

Moreover, since y € T; (K) and the cylinder 7} (K) has height < a;,

(Yo T o T3, (K)) S 20" S

m,Yy» 10 ~ 710

Since this holds forally € Q,, N E,,,
, 1 ,
(B T () 5 (340 )

Since the rectangle A,, has height and width approximately w;,, it follows that G
is a coarse microset of K.

We now conclude the proof of the lower bound. By (A.1) and (A.3) and the
definition of g,,,, forall 1 > r > 2™,

N, (gm(E)) 2 (1)”%; |

r

Thus by (A.4) and Lemma 2.2, dimy G > n + 3, so by Lemma 2.1, dima K > n + f.
Since £ € Tan(K) and = € m(E) were arbitrary, the result follows. O
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