Attainable forms of Assouad spectra

ALEX RUTAR

ABSTRACT. Letd € Nand let ¢: (0,1) — [0, d]. We prove that there exists
aset F C RY such that dim} F' = ¢(0) for all € (0,1) if and only if for every
0<A<O<],

0 (1= Np() (1 - 0)¢(0) < (- X)p ().

In particular, the following behaviours which have not previously been wit-
nessed in any examples are possible: the Assouad spectrum can be non-
monotonic on every open set, and can fail to be Holder in a neighbourhood of
1.
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2 RUTAR

1. INTRODUCTION

The Assouad dimension is a particular notion of dimension which captures the
scaling properties of the “thickest” part of a set. This in contrast to the more
usual notions of box (or Hausdorff) dimension, which are in some sense a global
measurement of scaling. The Assouad dimension was originally introduced in
[ ] to study the embedding theory of metric spaces. More recently, the
Assouad dimension has received a significant amount of attention in the literature:
see, for example, the books by Mackay & Tyson on conformal geometry [ I
Robinson on embedding theory [ ], and Fraser on Assouad dimension in
fractal geometry [ I

If the box dimension and the Assouad dimension of a set agree, this implies
that the set has a large amount of spatial regularity. For instance, this is the
case for any Ahlfors-regular subset of R”. However, the box dimension and
Assouad dimension can be distinct for many naturally-occurring sets, such as
self-conformal sets with overlaps or self-affine sets. In order to obtain a more fine-
grained understanding of the Assouad dimension in this situation, the Assouad
spectrum was introduced by Fraser & Yu in [ ]. This is a notion of dimension
parametrized by a variable ¢ € (0, 1), which approaches the box dimension as 6
approaches 0 and the (quasi-)Assouad dimension as ¢ approaches 1. We refer the
reader to [ ] for a general introduction to Assouad-type dimensions.

Besides being a useful bi-Lipschitz invariant and an important notion of fractal
dimension in its own right, the Assouad spectrum provides more refined infor-
mation about the Assouad dimension itself. As a result, the Assouad spectrum
has been explicitly studied for a wide range of examples (see, for example, [ ;

; ; ; ; ). This relationship has also been useful in
applications outside of fractal geometry. For instance, the Assouad spectrum plays
an important role in the work by Roos & Seeger [ ] on L? bounds for spheri-
cal maximal operators (and the analogous work in Heisenberg groups [ D-
The Assouad spectrum has also been used to obtain bounds for quasiconformal
distortion in geometric mapping theory [ I

In this paper, rather than consider explicit examples and applications of the
Assouad spectrum, we focus on the general question of classification: what con-
straints on a function ¢: (0,1) — [0, d] guarantee that there is a set F' C R? such
that dim% F = o(6) for all § € (0,1)?

1.1. Classifying Assouad spectra. We fix d € N and work in R? with the Eu-
clidean norm. We write B(z, ) to denote the open ball centred at = with radius 4.
If I is a bounded subset of R?, for § > 0, we let N5(F) denote the least number of
balls of radius d required to cover F. Then, for § € (0, 1), the Assouad spectrum of
F C R%is given by

0 «a
dim®, F = inf{a L (3C > 0)(Y0 < § < 1)(Va € F) Nyo(F 0 B(x,6)) < O<51/9> }

In general, limy_,odim} F = dimg F, and limy_,; dim} F = dimg F [ 1,
where dimgs I denotes the quasi-Assouad dimension of [ as introduced by Lii &
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Xi ]. Like the Assouad dimension, the Assouad spectrum measures the worst-
case local scaling of the set, but the Assouad spectrum specifies the relationship
between the small and large scales.

The main result of this paper is to give a complete classification of possible
forms of Assouad spectra.

Theorem A. Let d € N and let p: (0,1) —

) [0,d] be a function. Then there exists
F C R?such that dim% F' = o(6) forall 6 € (0,1)

if and only if for every 0 < A < 6 < 1,

(L) 0< (1= Ne() — (1= 0)e(0) < (0 - N 5).

The proof of this result is given in §3. For a geometric interpretation of the bound
(1.1), we refer the reader to §2.1. The forward implication is well-known (see, for
example, [ , Theorem 3.3.1]); the reverse implication is proven in Theorem 3.6.

We can interpret the first inequality in (1.1) as a growth rate constraint, and
the second inequality as an oscillation constraint. In fact, the second inequality is
always satisfied when ¢ is increasing (the short argument is given in Lemma 2.6),
which yields the following corollary.

Corollary B. Let d € Nand let ¢: (0,1) — [0, d] be an increasing function. Then there
exists a set ' C R with dim®, F = () if and only if 0 — (1 — 0)(0) is decreasing.

We can also obtain results for the upper Assouad spectrum, which is defined by
bounding the lower scale from above, rather than specifying the relationship
precisely:

dim) F = inf{a L (3C > 0)(Y0 < § < 1)(V0 < & < §Y°) (Y € F)

Ny (B(r,0) < ()"}

The upper Assouad spectrum is closely related to the Assouad spectrum: in

fact ﬁiF = SUPygr<p dim’ F by [ , Theorem 2.1]. Combining this with
Corollary 2.7 gives a full characterization of the upper Assouad spectrum (the
details are given in §3.5).

Corollary C. Let d € Nand let ¢: (0,1) — [0,d] be an arbitrary function. Then the
following are equivalent:

(a) There exists a set F C R® such that myF = o(0) forall 6 € (0, 1).
(b) p(0) is increasing and 6 — (1 — 0)p(0) is decreasing.
(c) ¢ is the supremum of functions of the form 6 — f(6)/(1 — 6) where

_Jr(l=c) :0<O<Zc
f(e)_{ﬁ(l—ﬁ) re<f<1

force (0,1)and k € [0,d].
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Beyond giving a full classification, Theorem A also clarifies many of the properties
of the Assouad spectrum: certain observations which might a priori depend on
explicit properties of the Assouad spectrum in fact only require the bound (1.1). For
instance, the observation that if dimg ' = 0 then dim‘ F' = 0 only requires the fact
that limy_,q dimeA F =dimg F along with the general bound (see Proposition 2.3).

We note that the 2-parameter family of functions in Corollary C consists cor-
responds to the Assouad spectra of sets with upper box dimension (1 — ¢),
quasi-Assouad dimension x, and Assouad spectrum as large as possible. In [ I
such sets are called quasi-Assouad regular.

Having completed the classification, in §4 we construct some exceptional sets.
Our first result concerns Holder regularity.

Theorem D. There is a compact set F' C R such that 6 — dim? F is not Holder in any
neighbourhood of 1.

In fact, there is no lower control on the rate at which dimi F approaches dimg F.
See §4.1 for the details. This result is sharp: in Proposition 2.4, we prove that
dim F is (uniformly) Lipschitz on (0,1 —¢) for all § > 0, with constants depending
only on ¢ and the ambient dimension d. This observation, along with Theorem D,

provides a complete answer to [ , Question 9.2].

Finally, we address the question of monotonicity. In [ , Question 17.7.1],
Fraser conjectures that the Assouad spectrum must be monotonic in some neigh-
bourhood of 1. This was originally conjectured in [ , Conjecture 2.4]. We

provide a strong negative answer to this question: we show that Assouad spectra
that are non-monotonic on any open set are dense in the set of all possible upper
Assouad spectra.

Theorem E. For any ¢ > 0 and function p satisfying one of the equivalent constraints
in Corollary C, there is a compact set F C R such that ¢(0) = dim% F is non-monotonic
on any open subset of (0,1) and ||¢ — ¢, < e

Since dimf, F is Lipschitz on (0,1 — §) for every § > 0, if ¢ is non-constant then
by Rademacher’s theorem ¢ must have strictly positive derivative on a set with
positive Lebesgue measure. This is sharp: using similar techniques as used in
the proof of Theorem E, one can construct examples of sets with quasi-Assouad
dimension d, box dimension arbitrarily close to 0, and Assouad spectrum that
is strictly decreasing on a dense open subset of (0,1) with Lebesgue measure
arbitrarily close to 1. We leave the details of such a construction to the interested
reader.

1.2. Rate constraints and the relationship with intermediate dimensions. The
intermediate dimensions are a different notion of dimension spectrum introduced
in [ ] that interpolate between the Hausdorff and box dimensions. In [ 1,
the author and Banaji fully classify the possible forms of the intermediate dimen-
sions. For simplicity, in the discussion that follows we assume that the upper and
lower intermediate dimensions coincide and denote the common value by dimg F'.
We refer the reader to [ ] for precise statements of the results in full generality.
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Recall that the (upper right) Dini derivative of a function f: R — R at z is
given by

(1.2) D*f(z) = limsup flete) - f(x)
e\o0 €

We then recall the following result:

Theorem 1.1 ([ D. Let g: (0,1) — [0, d]. Then there exists a non-empty bounded
set ' C R with dimy ' = ¢(0) if and only if

13 o< Dyl < 0= 900)

forall 0 € (0,1).
On the other hand, if : (0,1) — [0, d], Corollary C gives that there exists F' C R?
such that dimy F = ¢(0) if and only if

(1.4) 0< Do) < 1O

forall § € (0,1). In particular, when dimg F' < d, D*g(6) < @ - (d — dimg F')/d,
so an arbitrary function which is the intermediate dimension of some set can be
transformed to be the upper Assouad spectrum of a set through multiplication by

a constant, reflection, and translation—and vice versa.

1.3. Structure and outline of the paper. In §2, we study the family of functions
A (see Definition 2.1) which satisfy the bound (1.1) for some fixed d € N. This is
the family which we will prove is the set of possible forms of Assouad spectra for
subsets of R”. First, in Proposition 2.3, we establish a number of basic properties
of such functions. The Assouad spectrum has been known to satisfy these proper-
ties, but here we only require the bound (1.1) and do not require any geometric
properties of the Assouad spectrum itself. Then in §2.3, we establish the growth
rate bounds and the corresponding Lipschitz constraints.

Now, in §3, we prove Theorem A. The forward implication is standard, and
follows by a straightforward covering argument: for completeness, we give the
details in Proposition 3.1. To see the reverse implication, we will construct a
homogeneous Moran set with prescribed Assouad spectrum using the techniques
from [ ]. This result is encapsulated in Proposition 3.4, where for a function
satisfying certain derivative constraints, there exists a homogeneous Moran set
such that the Assouad spectrum is given by a convenient formula. It then remains
to choose such a function carefully, which is done in Theorem 3.6. In the remainder
of the section, we construct families of monotonic and non-monotonic Assouad
spectra in §3.3, prove closure under suprema in §3.4, and complete the proof of
Corollary C.

To conclude, we use the classification result to construct examples of sets with
exceptional Assouad spectra. The result proving Holder failure at 1 is described in
§4.1. Then in §4.2 we use the general family of non-monotonic spectra from §3.3 to
construct a set with Assouad spectra which is not monotonic on any open subset
of (0,1).
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FIGURE 1. A plot of 5(0) = (1 — 0)p(f) where ¢ € Ay, and the lines
with slopes corresponding to (2.2).

2. FORMS OF THE FAMILY OF FUNCTIONS Ay

We first define the family of functions A,;, which we will prove in §3 are the
possible forms of the maps 6 — dim% F for sets F C R”.

Definition 2.1. Let A, denote the set of functions ¢: (0,1) — [0, d] where for any
0<A<O<l,

21) 0< (1= Ne() — (1= 0)p(0) < (0 - N (5).
In this section, we study properties of the family A, directly: we emphasize that
we do not require any geometric facts about the Assouad spectrum itself.

In Proposition 2.3, we will prove that functions in A, are uniformly continuous.
Thus, we will embed A, in C([0, 1]) by defining ¢(0) = limy_,o p(#) and (1) =
limy_,1 p(#). We will use this notation once we prove uniform continuity.

2.1. Rescaling and a geometric interpretation of the bound. Given ¢ € A,
define 3(0) = (1—-6)¢(8). In (2.1), the first inequality implies that 3(0) is decreasing,
and the second states that forall 0 < A < 0 < 1,

(2.2)

The left hand side is the negative of the slope of the line passing through (), 3()\))
and (0, 5(0)), and the right hand side is the negative of the slope of the line passing
through (A\/6, 5(A/6)) and (1,0). The secants in this constraint for a function /3 are
depicted in Figure 1.

2.2. Basic properties. In this section, we collect various properties of the family
Ay. First, we observe the following useful lemma which was essentially proven in
[ , Remark 3.8]. Here, we obtain it as a direct consequence of (2.1). Heuristi-
cally, this lemma states that the function ¢ () is “almost increasing”, up to some
possible local oscillations.



ASSOUAD SPECTRA FORMS 7

Lemma 2.2. Let p € Ay. Given 0 < 01 <y < --- <0, <1,

(A1) < max {gp(?—l),ap(%), . "(’0<egnl>’w(9n)} .

In particular, for anyn € Nand 0 € (0,1), o(0) < p(01/).

Proof. Let0 < 0; < 0, < --- <0, < 1. Applying (2.1) to each pair 6;, 0,1,

6
(1= 01)ip(61) < (1 - +Z (0= b)e ()
from which the result follows. Taking §; = 0" = *foreachi = 1,...,n, observe
that 0, /60, = 60/" and 6,, = 6'/" so that ¢ () < @(61/”) O

We now have the following essential properties of .A,. All of these properties have
been previously observed for the Assouad spectrum, but the main point here is
that these properties only depend on the family .4; and not on other properties
of the Assouad spectrum. Some of these properties will be used in the proof of
Theorem 3.6, so we cannot formally depend on the corresponding results for the
Assouad spectrum. We draw on ideas from [ ; ].

Proposition 2.3. Let p € Ay be arbitrary. Then the following properties hold:
(i) The limits p(0) := limg_,0 p(0) and p(1) = limy_,1 p(0) exist.
(ii) Each ¢ € Ay is uniformly continuous.
(iit) p(0) = infoe(o,1) ¢(0) and p(1) = SUPge (0,1) ©(0).
(iv) Forany 6, € (0,1), if o(6y) = p(1), then p(6y) = p(0) forall 6y < 6 < 1.
(v) If (0) = 0, then ¢(6) = 0 for all 6.

Proof. First, we show that ¢(#) is continuous on (0,1). For 0 < 6, < 6, < 1 we
have 0; < 6,/6, < 1, so applying (2.1) we obtain

23) (1—0)p(f) < (1 —601)p(6) < %(1 — ) (Bs) + (1 . Z—;) (%)

This implies that

©(61/62)

p(bh) — p(f2) < Bo(1— 0y

(02 — 6y).

Similarly, from the first inequality of (2.3),

1-46 0y — 0
(02) — p(61) < (1 —5, 1) p(0) = =—=(61).
Since ¢(6,/62) < dand ¢(0;) < d, it follows that ¢(6) is Lipschitz on any closed
subinterval of (0, 1), and therefore continuous on (0, 1).

Now consider (i). Observe that (1 — )¢ () is a bounded decreasing function of
0, so limy_,o(1 — 0)p(0) exists so limy_o p(f) exists as well. To see that limy_,; ¢(0)
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exists, we use the proof from [ , Section 3.2]. Set L = lim sup,_,; ¢(6) and
lete > 0. Since ¢(0) is continuous, we can find 0 < u < v < 1such that ¢(¢) > L—¢
for all € [u,v]. Thus by Lemma 2.2, with

[j 1/n l/n

we have ¢(f) > L — e forall § € X. But v'/* > Y/®™+) for all n > ny with
s> }ggz, soin fact (u!/™ 1) C X. Thus limy_,; ¢(6) exists as well. In particular,
combining the existence of endpoint limits with continuity of ¢ on (0, 1), (ii) also

follows immediately.

To see (iii), if 6, € (0,1), then 6,, = 91/ "isa sequence converging monotonically
to 1 with ¢(6,,) > ¢(0;) by Lemma 2.2. Thus (1) > ¢(6;). Similarly ¢(67) < ¢(61)
forany n € N, and lim,,_,, 7 = 0. But 6, was arbitrary, giving (iii).

Now we see (iv). Suppose ¢(1) = ¢(#;) for some 0 < 6; < 1. By (2.3),

(1 —=01)p(1) = (1 = 02)p(02) < (02 — 01)p(01/02) < (02 — 01)p(1)

since ¢(61/62) < ¢(1) by (iii). This implies that ¢ (1) < ¢(6,), so (iv) follows.
To see (v), if p(0) = 0, then limy_,o(1—0)¢(8) = 0. But (1—-0)¢(0) is a decreasing
function of 6, so (1 — 0)p(f) = 0 forall § € (0,1),i.e. () =0foralld € (0,1). O

2.3. Rate constraints and increasing functions. Now, we obtain bounds on
growth rates of functions in A;. We recall that the Dini derivative is defined in
(1.2). We obtain the following regularity property for functions ¢ € Aj.

Proposition 2.4. Let ¢ € A, be arbitrary and 6 € (0, 1). Then

p(1) —»(0) _ ot (9)
_r\) PN~ < T\
=g =PeO=1y
In particular, ¢ is d/é-Lipschitz on [0,1 — 0] for any 6 > 0.
Proof. The first inequality in (2.1) is equivalent to saying that 5(¢) = (1 —
8)¢(0) is decreasing. Since ¢ is continuous by Proposmon 2.3 (ii), by [ ,
Corollary 11.4.2] 3 is decreasing if and only if D*3(0) = —p(0)+(1—0)D"p(0) <

or equivalently

0)
oo < P
D7p(0) < Tt
This gives the upper bound.
To obtain the lower bound, let 0 < A < 6 < 1 be arbitrary. By (2.1),

BA) = B(0)

—p(\/0) < 2

and taking ¢ — A from the right,

—¢(1) < DBA) = —p(6) + (1 = 0)D™p(6).
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Since 0 < p(f) < dand 0 < p(1) — ¢(#) < 4, it follows that ¢ is d/J-Lipschitz on
(0,1 — 6] for any § > 0. O

Remark 2.5. In §4.1, we will see that, in general, elements of A; need not be
Lipschitz (in fact, not even Holder) on the entire interval [0, 1].

Now, we obtain the following result concerning increasing functions.

Lemma 2.6. If ¢: (0,1) — [0,d] is increasing, then ¢ € A, if and only if

0
2.4 Do) < 2O
1-06
Proof. The forward direction is Proposition 2.4. To obtain the reverse implica-
tion, let 0 < A < # < 1. Since g is increasing, if § < \/6, then ¢(\) < p(0) < ©(\/6)
and

A

0< (1= X)p(N) = (1= 0)¢(0) < (0 = N (6) < (0= N (5)

and if A\/0 <,

0< (1= N)e() — (1= 0)p(6) < (1= Np(5) = (1= )¢ (5) = 0= Ne(5)
which is (2.1). -

We obtain the following convenient application, which we use to characterize the
upper Assouad spectra.

Corollary 2.7. Let ¢ € A,. Then g € A, where

?(0) = sup o(6).
0<0'<0

increasing, we only need to

Proof. As proven in Lemma 2.6, since $(6) is
< (#), it suffices to show D'p <

verify that D5(0) < B(0)/(1 — 0). Since ¢(6)
max{DTy, 0}.

Fix 6, and let (0,,);2, — 0, be strictly decreasing. Passing to a subsequence if
necessary, we may assume p(6,,) > (o) for all n; otherwise D*p(6y) < 0. Thus
for each n thereis 6§, < ¢/, < 6,, be such that p(¢!,) = $(,). Thus

@(egz :Z(eo) . go(@éi :gowo) < D*(60)

But (0,,);2, was an arbitrary sequence, so the result follows. O

3. CLASSIFYING THE FORMS OF ASSOUAD SPECTRA

In this section, we prove the main classification result, Theorem A.



10 RUTAR

3.1. Bounding the Assouad spectrum. We recall the following general bounds,
which are given in [ , Proposition 3.4] and [ , Theorem 3.3.1]. We include
the details here for completeness.

Proposition 3.1. For any set F C RY, the function ¢(0) = dim% F is in Aj.

Proof. Let 0 < 0; < 0, < 1 and let € > 0 be arbitrary. For 6 > 0 sufficiently
small, since B(z,0%) C B(x,6%) forallz € F,

sup Ns(F N B(x, %)) > sup Ns(F N B(z, §%))

zeF z€F

562 (p(02)—¢)
>

= (591—1)@(92)—5)(%)

which proves that (1—6,)p(0;) > (1—62)(¢(62) —¢). This gives the lower inequality
in (2.1).
To obtain the upper inequality, by covering B(z, §%*) by balls with radius 6%,
sup Ns(F N B(x, ")) < sup Ny, (F N B(x,6™)) sup Ns(F N B(x,6%)).

TeF zeF zeF
This implies for all § > 0 sufficiently small

, 5 @(61/02)+e 502 ©(02)+e
Ns(FNB(x,6)) < | = —
sup 5 (z,07)) < (592) ( 5 )

_ (g0 oot (5 ) e+ (557

which implies that

(1= 01)p(0h) < (02 — 01)(0(01/02) + ) + (1 — 02)(p(02) + €)

as required. O

3.2. Constructing sets with prescribed spectra. Now for any ¢ € A; we construct
a homogeneous Moran set C' such that dim} C' = ¢(0) for all § € (0,1). The
techniques here are based on ideas first introduced by the author and Banaji used

to solve an analogous question for the intermediate dimensions [ ]. We refer
the reader to the paper [ ] for more details on this general technique.
We first recall the notion of homogeneous Moran sets from [ ]. The con-

struction is analogous to the usual 2?-corner Cantor set, except that the subdivision
ratios need not be the same at each level.

LetZ = {0,1}%, set Z* = | .2, Z", and denote the word of length 0 by @. Let
r = (r,)%%, C (0,1/2] and for each n and i € Z, define S}': R? — R by

SHx) = rpx + b}
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where b € R? has

) = {0 ol

1—r, 49 =1

Giveno = (41,...,4,) € I", we write S, = S} o---0 S} . Then set

C=Cr) =) S.([0,1%.

n=1oc€l™

We refer to the set C' as a homogeneous Moran set.
Given § > 0,let k = k(0) be such thatry - - -1, < § < ry---1,_1. We then define

k(6) - dlog2
log(1/0)

Heuristically, s(§) is the best candidate for the box dimension of C' at scale 9.

We now define a family of functions which we may interpret as a reparametriza-
tion of the space of sequences (0, 1/2]. That this forms an alternative representa-
tion is described precisely in [ , Lemma 3.4].

Definition 3.2. Let 0 < A < a < d and let G(\, o) denote the set of functions
g: R — (), «) satisfying

s(0) = s.(9) =

A= (A=gy))exp(—t) < gy +1t) < a—(a—g(y))exp(—t)
foranyy € Rand ¢ > 0.

This family is essentially the same as the family defined in [ , Definition 3.1]
(the argument is given in [ , Lemma 3.2]).

To construct sets with prescribed Assouad spectrum, we will follow the ap-
proach from [ ] and use homogeneous Moran sets. The following lemma
is slightly different than [ , Lemma 3.4] but follows by essentially the same
proof.

Lemma3.3. Let 0 < A < a < dand let g € G(\, «). Suppose limsup,_, . g(x) > 0.
Then there exists a sequence 7 = (r;)52, C (0,1/2] so that

(3.1) |sr(exp(—exp(2))) = g(x)] < dlog(2) - exp(—2)
for all x sufficiently large.

Using Lemma 3.3, we establish the following general result which allows us to
prescribe Assouad spectra for homogeneous Moran sets.

Proposition 3.4. Let d € Nand g € G(0,d). Then there exists a homogeneous Moran
set C' such that

. . g<x + log %) —0g(x)
(3.2) dim, C = limsup .
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Proof. If lim,_,~ g(z) = 0, then

g(x + log %) —0g(x)
lim sup

=0.

Thus we can define the Moran set C(r) where r is a sequence converging to 0.
Otherwise, Lemma 3.3 provides a sequence r C (0, 1/2] satisfying (3.1). To
obtain (3.2), by definition of the Assouad spectrum,

: : log Nsi1/6(C N B(x,0))
dim% O = lim sup su .
A 50 pxeg (1—-1/0)logo

Observe that there is some constant M > 0 such that B(z, d) intersects at most M
cylinders in level k(0). In particular, C'N B(x, §) can be covered by M - 24k@"/*)=k())
balls of radius §'/?. On the other hand, C' N B(z, §) contains an interval in level
k(5), and therefore contains a d-separated subset of size 24+(5"")=1-k()) Thus there
is a constant M’ > 0 so that

M- 20RO < sup Nysjo (C' 0V B(x,8)) < M - 2400k
zeC
and therefore

log Nj1/6(C N B(z,0)) 0(k(6Y%) — Kk(6)) - dlog 2

lim sup su = limsu
o0 aee (1 1/0)logs s (1= 6) log(1/0)
, s(619) — 6 - 5(0)
= limsu .
6—0 P 1-0
Taking § > 0 small and applying (3.1) yields the desired formula. O

Definition 3.5. Given a sequence of continuous functions ( f;)2 ; each defined on
some interval [0, ay], the concatenation of (f)52, is the function

f: (—oo,Zak) —R
k=1

given as follows: for each z > 0 with 2;:3 a; <z < Z;?:O a; where qp = 0 we
define

f@zh@—Z%)

and we define f(z) = f1(0) for z < 0. The concatenation of a finite tuple of
functions is defined similarly.

We next prove the converse direction of Theorem A. For the convenience of the
reader, we also give an explicit description of the construction technique in R.
Note that in the proof of Theorem 3.6, the precise choice of the contractions
(ri)$2; € (0,1/2] is concealed in the application of Lemma 3.3 in Proposition 3.4.
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Let ¢ € A; be some fixed function. Fix some small constant §;. Then we will

inductively choose constants rg o in (0,1/2] for each n € N so that for each
IL<j<my
) 1 »(0)
(3.3) 2~ (<)
’]"1 DR ’r‘]
where 0 is such that 6% ~ O r§”> . r]( , and mn satlsﬁes On ) 7"7(712 SRS

Then take R,, very small, and set 0,11 = 6, rﬁ”) rmn R,,. Now let C denote the
Moran set corresponding to the sequence
(517 r§1)7 s

Rl,Tl g RQ,...).

) m17 ) m27

Forn € Nand z € C, N;0(C' N B(z,8,)) ~ 2/ where 5/~ 8, ™M ~7“](-"). In
particular, (3.3) guarantees that the Assouad spectrum of C' with respect to ¢ at
scale 0,, is precisely (0), for all n sufficiently large so that 1/n < 6.

The main details of the proof are to show (1) that such a choice of the constants
r; is possible, and (2) that for fixed ¢ and sufficiently small scales ¢ not of the form

d,,, the Assouad spectrum at 6 of C' at scale ¢ is at most ¢(0).

Theorem 3.6. Let ¢ € A, be arbitrary. Let o be such that ¢(1) < o < d. Then there
exists a homogeneous Moran set C' C R? such that dimy C' = v and, for all 6 € (0, 1),

dim% C' = o(6).

Proof. We may assume a > 0, or the result is immediate. We will prove the
result for the Assouad spectrum, and then explain how to modify the proof to
accommodate the Assouad dimension as well.

First, we apply some convenient rescaling to ¢(¢). Given y € (0, 00), exp(—y) €
(0,1) so we may define

§(y) = (1 — exp(—y))p(exp(—y)).

In particular, given 0 < y; < y2 < o0, it follows that 0 < exp(—y2) < exp(—y1) < 1
SO

0 < (1 —exp(—y2))p(exp(—y2)) — (1 — exp(—y1))e(exp(—y1))
< exp(—y1) (1 —exp(—(y2 — v1))) p(exp(—(y2 + y1)))

or equivalently

(3.4) 0 < &(y2) — &(yn) < exp(—y1)E(y2 — v1).

Moreover, observe that ¢(1) = lim,_,o ¢(exp(—y)) so lim,_,, {(y) = 0, and similarly
lim, o &(y) = ¢(0). In particular £ is continuous, increasing, and bounded.
Now for z € [0, p(0)], let £, denote the function

§(y) = &(y) + exp(—y)z
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f1 €1 f2

FIGURE 2. The concatenation of (fi, e1, f2) corresponding to a function
¢ € C4 defined in §3.3 restricted to the domain (0, o).

and similarly ¥, (y) = exp(—y)z. We note that £,(0) = U, (0) = =.

Now, let z; = 0 and choose constants wy, 2, such that the functions f,, = &., |jo.n)
and e, = VU, |j0, satisfy f,(n) = e,(0) and e, (n) = f,11(0) for alln € N. Then, let
g be the infinite concatenation of the sequence

(fien, fa,ea,...).

This construction is illustrated in Figure 2.

First, let us verify that g € G(0,¢(1)) C G(0,a). Since membership of G is
equivalent to a pointwise derivative constraint (see [ , Lemma 3.2]), it suffices
to verify Definition 3.2 piecewise. Let n € N. Note that e,, € G(0, (1)) since the
e, are differentiable with ¢/, (z) = ¢(0) — e, (x). Nextlet 0 < y < y + ¢ < occ. First
observe that

E(y +1) <E(t) +&(y) exp(—t) < (1 —exp(—1))p(1) + £(y) exp(—t)

by (3.4) and Proposition 2.3 (iii). Thus

faly+1) =&y +1) +exp(—(y +1))2n
< (1 —exp(—t))p(1) + &(y) exp(—t) + exp(—(y + 1))z
= (1 —exp(—t))p(1) + fu(y) exp(—t)

as required. To obtain the other bound, since § is increasing,

Faly +1) = €y + 1) + exp(=(y + 1))z
> £(y) exp(—1) + exp(—y) exp(—1)z,
= faly) exp(=1).
Now, let C' denote the Moran set corresponding to the function g. Let 6 € (0, 1):

we must show that dim} C' = ¢(6). Let 7 = log(1/0). By Proposition 3.4, it suffices
to show

(3.5) ©(0) = limsup glr+7) - Qg(x).

Forn € Nsetz, =23 " iand let N € N be sufficiently large so that N > 7 + 1.
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Now if n > N, g(z, +7) = fu(7) and g(z,,) = f.(0) = 2, so that

g(xn +1¢)_—0 Og(xn) _ (1- 9)90(?_*992” bz _ ().

This gives the lower bound in (3.5).
It remains to see the upper bound. We first observe for all y > 0 and z € R that

Indeed, expanding the definition of £, and applying (3.4),

E(y+7)—08.(y) =&y +7) +exp(—(y + 7))z — exp(—7)(£(y) + exp(—y)=)
=&y + 1) —exp(—7)&(y)
< (1) = (1= 0)p(0).

Now let x > zy be arbitrary and let n be such that z € [z, — (n — 1), 2, + n].
First note that for y € [z, — (n — 1), 2, + 21}, g(y) = exp(—(y — x,)) 2z, + ¢(y) where

0 cx,—(n—1)<y<uz,
Em)exp(—(y —x,+n)) zp+n<y<z,+2n

by choice of the constants w,, and z,. If z € [z, x, +n|, since x +1og(1/6) < z,,+2n
and g(y) <&, (y — ) forall y € [z, z,, + 2n], the prior computation shows that
glx +71)—0g(x) < (1 —0)p(#). Otherwise, z € [z, — (n —1),2,]. oz +7 < x,,
then g(z +7) —0g(x) =0 < (1 — 0)¢(), and if z,, < v + 7 < z, + n, then

9@ +7) —0g(x) = &(z + 7 —2n) < E(7)

since ¢ is increasing. Thus (3.5) holds, finishing the proof.

In order to obtain the result for the Assouad dimension as well, we modify
the construction as follows. Define functions u,: [0,1/n] — (0,«) by the rule
up(z) = a — (o — ¢,) exp(—z). Choosing the constants ¢, appropriately and
modifying the constants w,, and z,, the concatenation g of the sequence

(f17€1,U1,f2,€2,U2, .. )

is continuous and g € G(0,«a) since o > ¢(1). Since the w, are supported on
intervals with lengths converging to 0, the same arguments as before yield the
correct bounds for dim% C up to an error decaying to 0 as n goes to infinity. On the
other hand, the same arguments as given in [ , Lemma 3.7 and Theorem 3.9]
give that dim, C' = . We leave the precise details to the reader. O

3.3. Families of monotonic and non-monotonic spectra. In this section, we de-
fine two general parametrized families of functions in .A,. The first is a 2-parameter
family composed of increasing functions, and the second is a 3-parameter family
composed of functions which (outside of degenerate cases) are non-monotonic.
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3.3.1. Monotonic spectra. Let

My={(r,c):0<Kk<d0<c<1}

and for ¢ = (k, ¢) € M,;, we may define

el =¢) :0€]0,q
filh) = {/{(1 —0) :0€]c1]
Then, let

fi(0)
1—-46

(3.6) My = {9 — e Md}.

A direct argument shows that each ¢ € M, is an increasing element of A,.

3.3.2. Non-monotonic spectra. This family generalizes the example considered in
[ , Theorem 3.4.16]. Let

Co={(mer,): 0<n<d0<a<e<q” <1}

Suppose ¢ = (k,c1,¢2) € Cy. If ¢1 =0, let he(0) = (1 — ) for § € [0, 1]. Otherwise,
¢2 < ¢1/cy. Thus we may define h = h.: [0, 1] — [0, d] to be the unique continuous
function which has slope 0 on [0, ¢;] U [ca, ¢1/¢2], has slope —k on [¢1, c2] U [e1/¢2, 1],
and satisfies h(1) = 0. Now, let

he(0)

(3.7) Cd:{ewm:ce(]d}

We note that 5. satisfies a certain rescaling invariance: for c2<0<c,

he(0) — h(ﬁ) — klcs — 1)
C2
In particular, he(c3)/(1 — ¢3) = he(e2) /(1 — ).

There are degenerate cases: if ¢; = c}/ ? then Pisereo) = firey andif ¢ = ¢
or k = 0, then h,, ., ., = 0. Otherwise, h.(6)/(1 — 0) is strictly increasing on [0, ¢;]
and [cg, ¢1/¢2], constant on [c; /c2, 1], and strictly decreasing on [y, c2]. A plot of the
function h.(6)/(1 — 6) for non-degenerate parameters is given in Figure 3.

Proposition 3.7. Foranyd € N,Cy C Aj,.

Proof. Fix 0 < 61,02 < 1 and ¢ = (k,¢1,¢2) € Cq. We may assume 0 < ¢; < 1.
Since h, is decreasing, it suffices to show that

hc<)‘) — hc(9> A
et e\~ Z
i <)
forall 0 < A < 6 < 1. Since (3.8) is invariant under scaling by a positive factor, we

may assume x = 1. We prove this result in cases depending on the positions of A
and 0.

(3.8)
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n(1701+027%)

2 C1 c2 ‘1 1
2

FIGURE 3. A plot of f;(0)/(1 — 0) and h.(0)/(1 — ) where ¢ = (k, ¢2)
and ¢ = (k, ¢1, ¢2).

If A € [0,¢3] U [eg, 1], then he(N)/(1 — X)) < he(9)/(1 —0) for all A < 6. In
particular, as argued in Lemma 2.6, (3.8) holds for all such A\. Moreover, suppose
that (3.8) holds for the choice A = ¢; and all A < 6. Since h, is the constant
function on [c3, ¢;], this implies the bound on [c3, ¢;]. Moreover, for A € [c1, ca,
since he(c1/6) — he(A/0) < (1 — M)/,

C1

he(X) = he(®) < Ohe(2) — (er = X) < 00 (5).

Thus it suffices to establish (3.8) for A = ¢; and 6 > A. Write ¢g(0) = (hc(c1) —
he(0))/0: we must show that g(6) < he(c1/6).

1. If6 e [Cl,CQ], then 01/6 > Cl/CQ and

3. If0 ¢ [61/02, 1], then 01/9 € [Cl,CQ] and

C1 C1 C1 C1
9(8) = (0 —c1) + (CQ 02> <(1-3)+ (02 62) he( )
This treats all the cases 0 < A < 6 < 1, as required. O

3.4. Closure under suprema. In this section, we prove that A, is closed under

taking suprema. This essentially follows since A, is uniformly Lipschitz on [0, 1—0]
for any ¢ > 0.
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Proposition 3.8. Let (p;) ez be some family of elements in Ag. Then sup;c 7 ¢; € Aaq.

Proof. Let f = sup,c 7 ¢;. Choose a sequence J; C J, C --- C J such that each
J, is finite and with

fo=max{p; i€ J,}

that f = lim,_, f,, pointwise. An easy computation shows that if ¢, ¢, € Ay,
then max{y, p2} € Agy; in particular, each f,, € A,.

We first show that f € C([0, 1]). Since (f,,)7>, is monotonically increasing, by
the Arzela—Ascoli Theorem, it suffices to show that (f,,)7>; is uniformly bounded
and uniformly equicontinuous. Uniform boundedness is immediate, so we must
verify uniform equicontinuity.

Set b = lim,,_, f,(1) and let N be sufficiently large so that f,,(1) > b — /2 for
alln > N. Since fx is continuous, get § > 0 so that fy(y) > fy(1) — /2 for all
y € [1 —46,1]. Then |f,(z) — f.(y)| < e whenever z,y € [1 — §,1]. Finally, since
each f, € A, the function f, is uniformly Lipschitz on [0,1 — §] as proven in
Proposition 2.4. It follows that (f,,)22; is uniformly equicontinuous on [0, 1].

Thus f € C([0,1]). To verify that f € Ay, let0 < A < § < 1 be arbitrary. Then
for any ¢ > 0, get n such that || f,, — f||., < € so that

(L= NFO) = (L= 0)F(0) < (L= N)(fulX) +&) — (1 )(fu(0) — )
< (6= N fulV6) + 2
< (0 —=XN)f(NO)+ 3¢

for any ¢ > 0, so the inequality holds. The lower inequality follows identically. [J

Remark 3.9. Note that 4, is not compact: for example, consider the functions
©n(0) = min{c,/(1 — 0),1} with constants ¢, > 0. If lim, ,, ¢, = 0, then ¢,
converges pointwise to the function which is 0 on [0,1) and 1 at 1, and hence
has no uniformly convergent subsequence. However, a simple modification of
the above proof gives that for every ¢ > 0, the restriction of A, to C([0,1 — d]) is
compact.

3.5. Characterization of upper Assouad spectra. We conclude this section with
the proof of Corollary C. We recall that the family M, is defined in (3.6).

Proof (of Corollary C). To see that (a) implies (b), if I ¢ R? has dim} F = o(6)
and MZF =p(0), by [ , Theorem 2.1],
?(0) = sup (¢

0<0'<6

so by Corollary 2.7, p € A;s0 6 — (1 — 0)p(0) is decreasing. Of course, ¥ is
increasing as well.
Next, (b) is equivalent to saying that for each A € (0,1),

feon(0) <p(0) - (1-10)
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forall 6 € (0, 1), with equality at § = \. Since § € A; by Lemma 2.6, % is uniformly
continuous on (0, 1) and therefore ¥ = sup,c, fz(n),\ for any countable dense
subset £ C (0, 1). This implies (c).

Finally, to see (c) implies (a), since A, is closed under suprema by Proposi-
tion 3.8, if p(0) = sup;r f(0) for some F C My, then g € Ay. Thus the result
follows by Theorem 3.6. O

4. EXAMPLES WITH EXCEPTIONAL ASSOUAD SPECTRA

4.1. Holder failure at 1. Here, we prove the following result which states that
there is no control of the rate at which Assouad spectrum approaches the quasi-
Assouad dimension.

Proposition 4.1. Let f: [0,1] — [0, d] be a continuous increasing function with f(0) >
0. Then there exists a compact set F C R? such that diim% F < f(0) forall § € (0,1) and
limg_,; dim% F = f(1).

Proof. For(0 < 6 < 1,let h(f) = ming<g<o(1—0") f(0') and let p(6) = h(0)/(1-0).
By definition, h is decreasing, ¢ < f, and since f(6) < d, limy_,; h(6) = 0. Next, let
us verify that ¢ is increasing. Let 0 < A\ < § < 1 be arbitrary. If h(\) = h(f), then it
follows immediately that ¢ (0) > ¢()). Otherwise, let 6’ attain the minimum in the
definition of h(6). Since h(\) > h(f), we must have A < ¢ < § so that

h(6)

PN < FON) < F(8) < =5 <

©(0).

Therefore ¢ € A, and p(0) < f(6).

Finally, we verify that limg_,; ¢(0) = f(1). Since (1—6)f(#) > 0forall0 <6 < 1
and limy_,; h(0) =0, forall 0 < A\ < 1, thereisa A < 0 < 1sothat h(0) = (1—-06)f(0).
Thus ¢(8) = f(6) for a sequence of ¢ converging to 1; but f is continuous so
limg_,; f(0) = f(1).

To conclude, Theorem 3.6 gives a compact set ' C R? such that dim®, F' = ¢(6).
By the properties of ¢ established above, the claim follows. U

We also consider an explicit example. Consider the function f(6) = 1 + m ;
note that f is not Holder at 1. A direct computation shows that there is some
minimal 6, € (0, 1) so that (1 — 6) f(#) is decreasing on [, 1]. Thus if we define

(1=00)f(60) . <0
o ( 0) _ 1-0 0< 0 <6y
f(0) <0<
then o is a continuous increasing function of § with (1 —6)o(6) decreasing. Thus by

Lemma 2.6, 0 € A;. A plotof o(¢) and the upper bound min{(1—6y) f(6y)/(1—6),1}
is given in Figure 4.

4.2. Non-monotonicity on any open set. In this section, we prove that Assouad
spectra which are non-monotonic on every open subset of (0, 1) are dense in the set
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FIGURE 4. Plot of a spectrum which is not Holder at 1, along with the
general upper bound.

of upper Assouad spectra. Throughout this section, we fix a non-zero increasing
¢ € Ay, and as usual write 5(0) = (1 — 0)p(0).

We recall that the functions A, ., for (k, ¢, c2) € Cy are defined in §3.3. Fix
0 <A< landfor0 <y < pg()\),define

_ Ao =1+ VO y/e(N) —1)2 +4X
; .

c(\,y)

The constraint on y ensures that ¢(\, y) == (¢(A), A, ¢(\, y)) € C4. Note that ¢(\, y)
is chosen precisely so that

Observe that A, ,) < 8 by Corollary C. We also let L, , denote the unique affine
function passing through the point (A, y) with slope —p(\). Equivalently,

Lyy(0) = heay)(0) for all A <6 <c(\y).

Note that L , has unique zero A + y/¢(\).
Next, we define a useful family of approximations of the function ¢. For each
1 <t < oo, define the functions

ei(0) = @<9t) and Bi(0) = (1 —0)p(0).

This family of functions uniformly approximates ¢ from below while also satisfy-
ing a key “affine partitioning” property (i).

Lemma 4.2. Suppose ¢ € Ay is strictly increasing. Then the following hold.
(i) Lett € (1,00) and X € (0,1) and let { == Ly: g(xty. Then £(X\) = [;(X\). Moreover,
0(0) > B(0) for 0 < 0 < Nand £(0) < [:(0) for A < 0 < 1.
(ii) Let A € (0,1). Then Ly g,(»)(0) < B¢(0) forall X < 6 < 1.
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(iii)) Forall1 <t; <tyand 0 < 6 < 1, we have ¢, () > ¢+, (0).

(iv) Forall 1 <t < oo, 3, is strictly decreasing.

(v) Forall 1 <t < oo, ¢ is strictly increasing and an element of A,.
(vi) We have lim;_,1 ||p: — ¢||, = 0.

Proof. Lett € (1,00) and A € (0, 1), and let ¢ be defined as in (i). It is a direct
computation that /(\) = 3,()\). Moreover, since ¢ is strictly increasing, the family of
lines Ly g,(y) is strictly increasing in the following sense: Ly, g,(x,)(0) < L, 8,(2)(6)
for all \; < Ay and 0 < # < 1. Thus by monotonicity of # — 6" and since
Ly g, (A) = Be(A), this implies (i) and (iii). Now, (ii) follows from (i) since ¢ is
strictly increasing, so Ly g, (0) < £(0) forall A < 6 < 1.

Next, since ¢ is strictly increasing, it is clear that ¢; is strictly increasing.
Moreover, by (i), L s, (0) < 5,(6) for all & > A, and since (1 — 6)/(1 — ¢") is
decreasing (resp. strictly decreasing for ¢ > 1), 3, is also decreasing (resp. strictly
decreasing for ¢ > 1). This yields (iv) and therefore (v) by Corollary C.

And finally, (vi) holds since 6 + 6" uniformly converges to the identity map on
[0,1]ast — 1. O

Remark 4.3. There is nothing particularly special about the function 6 — 6" for
1 <t < oo. Take any increasing homeomorphism ¢ of [0, 1] such that ¢(#) < 6 and
6 — (1 —-0)/(1 —¢(0)) is decreasing. Then ¢ o ¢ is an increasing element of A,
which satisfies (i).

We now introduce the key property for our inductive construction.

Definition 4.4. Let £ C (0, 1) be a finite set, let y: £ — R, and let 1 < ¢ < 2. We
say that the triple (L, y, t) is zigzagging if the following conditions hold:

(a) The function y is strictly decreasing.

(b) Forall A € £, B:(\) < y(A) < B(N).

(C) Forall A€ Land 0 € L \ {)\}, hc(gvy(g))()\) < y()\)

A depiction of a zigzagging family can be found in Figure 5. If (L, y, t) is zigzag-
ging, we define the corresponding function

(4.1) Y=Yy = max{ril&x Be(n () 5t}

Observe that ¢ < 3, and moreover 1) = h() 4(»)) in a neighbourhood of each A € L.
The key observation is that zigzagging families can be extended by arbitrary
elements not in £ in a way which only changes the definition of v’ locally.

Lemma 4.5. Let ¢ € A, be strictly increasing and let (L,y,t) be zigzagging with
corresponding function 1. Let € (0,1) \ L. Then for all 6 > 0, there exists an extension

y(¢) € R such that (L U {C},y,t) is zigzagging, y(¢) < ¥(¢) + 6, and
he(cyen(0) < ¥(0) forall 0= A+

Proof. Let (L,y,t) be zigzagging with corresponding function ¢. Let 6 > 0 be
tixed. The proof will follow from two key observations.
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FIGURE 5. A plot of a zigzagging family for ¢(0) = 1+ 0, with £ =
{1/4,1/2},t = 2, and an appropriate choice of y.

. Forall 0 < b < B(¢) and 0 > ¢(C,b), heep)(0) < B:(0). Recall that hep)(0) =

fic.oen(0) forall 0 > ¢/c(¢,b) > ¢V By (i) of Lemma 4.2, 5(0) > fic.0(c)) ()
for all § > (/2. Moreover, 3; > (3, by Lemma 4.2 (iii). Then the claim follows
since f3; is decreasing and h.(¢ ) is constant on the interval [¢((, b), ¢/c((, )]

. We have L¢ ) (0) < (8) forall { < 6 < 1. There are three cases.

First, if (¢) = B:(¢), then L 4y (8) < Bi(0) < ¢(0) forall ( < 6 < 1 by
Lemma 4.2 (ii).

Second, suppose 1(¢) = he(ry(r)) for some A > (. Since y is strictly increasing
and y(A) < B\ = (1 - A)p(A),

ey (L—L) ca-nY g n<a-c

PO () (0
The second inequality follows since /3 is decreasing. Rearranging,
vy y\N)
+ =5 <A+ ==
e ey

But the left hand side is the unique zero of L. ,,) and the right hand side is
the unique zero of L, y(»). Thus for all # > (, recalling that ¢/(¢) = y(\) by
assumption,

Lewo)(0) < hepyn (0) < 9(0).

Finally, suppose 1/(¢) = he(xy(n)) for some A > ¢. But ¢(A) < ¢((), so for all
6 > (, since he(y y(r)) has slope either 0 or —¢p (),

Lewo)(0) < hepyny < 9(0).

This treats all possible cases, as required.
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Now let 6 > 0 be arbitrary. We may assume ( + ¢ < A forall A € £ with A > (.
Let s = min{y(\) : A < (}; note that s > ¢({) since (£, y,t) is zigzagging. By 2
and since v is continuous, by choosing ¢(¢) < y(¢) < min{s, ¢ ({) + 0} sufficiently
small, we may assume that L¢ ) (0) < 9(0) forall ( +6 < 0 < ¢(¢,y(¢)). But

Pe(e(e)(0) < B2(0) < B:(0) < (0)

forall 8 > ¢(¢, y(¢)) by 1. Thus choosing y(¢) > ¢(() sufficiently small, the claim
follows. O

With this result, the proof of Theorem E follows without too much more trouble.
Actually, we prove the following slightly more general result.

Theorem 4.6. Let ¢ € A, be increasing and let £ C (0, 1) be an arbitrary countable set.
Then for any ¢ > 0, there exists ' C R® such that f(6) = dimf F satisfies || f — ¢| . < ¢
and forall A € L, D~f(X) > 0and D*f(\) < 0.

Proof. First, since every increasing function of A, can be uniformly approxi-
mated by a strictly increasing function in A;, we may assume that ¢ is strictly
increasing. Next, by Lemma 4.2 (vi), we may choose 1 < ¢ < 2 sufficiently small so
that [l — il < <.

Now, enumerate £ = {)\, : n € N}, and write £,, = {\1,...,\,}. We induc-
tively define a function y: £ — R and a decreasing sequence of functions -, such
that for each n € N, setting ¢, = 9, ,+ as in (4.1), the following hold:

(i) The triple (£,,,y,t) is zigzagging.
(ii) The functions 7, are continuous and decreasing.
(iii) v,(0) > () forall 0 € (0,1) \ £, and for A € L,,, v,(\) = ¥,,(\) and

D™,(A) = D heryian (A).-

We begin by choosing y(A1) € (8:(\1), B(A1)) arbitrarily; it is clear that (i) holds
and that a function v, satisfying (ii) and (iii) exists.

Now suppose we have defined y on £,, and a function v, such that (ii) and (iii)
hold. Let § > 0 be sufficiently small such that E5 :== [A\,411 — 0, \py1 + 0] N L, = &,
Es  (0,1), and ¢, < min{y(A\) : A < A3 A € L,} on Es. This choice is
possible since D", (\) < 0 for A € L, since (L,,y,t) is zigzagging. Reducing 0
more if necessary, we may also assume that v,, > ¢,,(A\,41) + 6 on Es. Applying
Lemma 4.5 with this choice of J, get a value y(\,,+1) such that the triple (£,,+1, y, )
is zigzagging. Moreover, since v, is decreasing, it follows that (iii) holds with v, 1
in place of v,,. Therefore we may choose 7,,+1 < 7, such that (ii) and (iii) hold.

Finally, let f,,(6) = ¢,(0)/(1 — 0) and let f = lim,_,o f, = sup,cy fn- Then
f € Ay by Lemma 4.2 (v) and Proposition 3.8, and moreover ||f — ¢|, < € by
choice of ¢ since 5, < ¢ < 8 by construction. Moreover for each A € D, by
properties of the inductive construction,

L 50 = ey (V) = 9(3) < B(N),

2. D_w(/\) = D_hc(/\y()\)), and
3. DRP(A) = DTheiayn)-
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In particular, for all A € D, since y(\) < 5(A),

_( heyo(N) +f heuy)) (A)

Finally, the existence of the corresponding set follows by Theorem 3.6. 0

The construction is quite flexible: the countable set £ can be chosen arbitrarily and
moreover the function y at each step of the inductive construction can be chosen
from an open set of parameters. This motivates the following question.

Question 4.7. Are “typical” elements of A, non-monotonic? Does the set of functions
o € A, where ¢ is non-monotonic on every open subset of (0, 1) form a residual subset of
Aq?
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