On the upper Assouad spectrum
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ABSTRACT. The goal of this note is to provide a simplified proof of the
following fact: if F is a non-empty metric space with dimqa F < oo, then for
0<0<1,

miE = sup dim) E.
0<A<6
This will follow from an asymptotic Lipschitz property of a two-scale branch-
ing function associated with the set E.

This result was previously obtained in [ ] under the additional
assumption that F is a subset of Euclidean space, with a more difficult proof.

A two-scale branching function. Let F be a non-empty metric space. We first
recall the two-scale branching function associated with £, which was introduced in
[ ]. It is the function 3 defined for 0 < v < u by

B(u,v) = logsup No-u(B(x,277)).

zeFE

Here, the base of the logarithm is 2; for § > 0, B(x, §) denotes the open ball with
radius J; and N;s(F') denotes the least number of open balls of radius ¢ required to
coveraset I' C L.

We begin with some basic properties of the function f.

Lemma 1. Let E have two-scale branching function /3. Then:
(i) B(u,u) =0 forall u > 0.
(ii) [(u,v) is increasing in u and decreasing in v.
(iii) Forall 0 <v <w < u,

1) Blu,v) < Blu,w) + Bw, v).

Proof. The fact that 5(u,u) = 0 for v > 0 is immediate, along with the mono-
tonicity properties. To verify (1), let 0 < v < w < u be arbitrary. Then to obtain a
cover for B(z,27"), we first cover with balls of radius 2%, and then cover each
ball in the resulting cover with balls of radius 27*. Therefore

Ny o(B(r,27)) < Ny-u(B(w,27)) - sup Ny-o (B(y, 27)).

yer

Taking suprema in x and a logarithm, the claim follows. 0
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Assouad spectra and quasi-Assouad dimension. Using the two-scale branching
function f3, let us recall various definitions associated with the Assouad spectrum.
First, the Assouad spectrum is defined for 0 < 0 < 1 by

dim’, E = inf{s >0:3C > 0Y0 < u we have S(u, fu) < C + s(1 — e)u}.
Similarly, the upper Assouad spectrum is defined for 0 < 6 < 1 by

dimy F = inf{s >0:3C >0V0 <wv < fuwehave B(u,v) < C’+s(u—v)}.

Clearly dimiE > dimi E, and moreover dimiE is monotonically increasing in 6.
The quasi-Assouad dimension is the limit at 1:

——90
dimgs £ = lim dim, F.
imga 91}1% im,
It is standard to rephrase the above definitions in terms of limits of /3.

Lemma 2. Let E have two-scale branching function [3. Then
: : Bu, Ou)
dimf E = hin_> Solip m
and

—0 . B(U, /\U)
dim, £ = limsup su .
A u—>oop OS)\IS)H u(l - )‘)

We can now see that the result claimed in the abstract is simply a justification of

the exchange of the limit and the supremum in the equivalent formula for dim'y E.
To do this, we will prove that the functions (u, v) are uniformly Lipschitz in the
variable v up to a sub-linear error term in u.

An asymptotic Lipschitz property. Now let us assume in addition that the quasi-
Assouad dimension of F is finite.

Lemma 3. Let E have two-scale branching function [3, and suppose o = dimga £ < 0.
Then forall 0 < v <,

Bu,v) < a(u—v) + o(u).

Proof. It suffices to show for all € > 0 there is a constant C. > 1 such that for all
O<r<R<«<l,

(2) sup N,.(B(z, R)) < Cor™° (E)O‘

zEE r

Let 6 < 1 be sufficiently large so that (1 — 6)(a + ¢) < ¢. We consider two cases
depending on the value of R. If R > 1Y, then by definition of the quasi-Assouad
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dimension there is a constant C. (depending on E, §, and ¢) so that
a+te o
N,(B(z,R)) < C. (?) < C.r* (;) .

In the second inequality we just use that R < 1. Otherwise, if R < r? since
B(z,R) C B(z,r%),

9\ ate o
N,(B(z,R)) < N,(B(z,1")) < C. (7“_) < -0 < oy (5)
r r

where the last line follows since (R/r)* > 1. Since z € E was arbitrary, the claim
in (2) follows.

Taking logarithms and substituting the definition of 3, the desired claim fol-
lows. O]

Using the subadditivity property (1), we can convert Lemma 3 into an asymptotic
Lipschitz property in the second argument of /.

Corollary 4. Let E have two-scale branching function [3, and suppose o = dimqa F <
00. Then forall 0 < w < v < u,

0 < B(u, w) = Bu,v) < (v —w) + o(w).
Proof. By monotonicity, 5(u, w) > (u,v). Then by (1) followed by Lemma 3,

Bu,w) — B(u,v) < B(w,v) < alv—w)+ o(u)

as claimed. 0

Upper Assouad spectra from Assouad spectra. Now, we prove that we can
recover the upper Assouad spectrum from the Assouad spectrum.

Theorem 5. Let E be a non-empty metric space with dimgs E < co. Then for 0 < 0 < 1,
——0 A
dimy, £ = sup dimj F.
0<A<0

Proof. Recalling Lemma 2, get an increasing sequence 0 < u, — oo and A, €
[0, 0] such that A\, — X € [0, 6] and

-0 T 6(“7@7 /\nun>
dimy =l = A=)
Then by Corollary 4, for n € N,
3) |18ty Antin) — Btn, N)| < @un| A — A + o(uy,).
Since < 1,(1—X,) "t = (1-X)"}s0
Bun; Anun) — Bun, A)

I - ~ 0.
B N B W S T v Rl

Therefore dim?} £ > dimE as required. O
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