Frostman's lemma and subadditive functions

VILMA ORGOVÁNYI & ALEX RUTAR

ABSTRACT. We give an exposition of Frostman's lemma from the perspective of subadditive functions on trees.

1. Frostman's Lemma

Let $E \subset \mathbb{R}^d$ be an arbitrary set. The *Hausdorff s-content* of E is the quantity

$$\mathcal{H}_{\infty}^{s}(E) = \inf \left\{ \sum_{i} |E_{i}|^{s} : E \subset \bigcup_{i} E_{i} \right\}.$$

Here, the infimum is over all families of sets $\{E_i\}$ and $|E_i|$ denotes the diameter of the set E. The Hausdorff content is countably subadditive: if $E \subset \bigcup E_i$, then

$$\mathcal{H}_{\infty}^{s}(E) \leq \sum_{i} \mathcal{H}_{\infty}^{s}(E_{i}).$$

On the other hand, Hausdorff content is not even finitely additive on disjoint sets.

The Hausdorff content is a lower bound for Hausdorff measure, and moreover $\mathcal{H}^s_{\infty}(E) = 0$ if and only if $\mathcal{H}^s(E) = 0$. In particular, the Hausdorff dimension can be defined purely in terms of Hausdorff content as $\dim_H E = \inf\{s : \mathcal{H}^s_{\infty}(E) = 0\}$.

Obtaining upper bounds on Hausdorff content involves finding optimal covers, whereas finding lower bounds on Hausdorff content requires bounding the cost of all covers. A convenient way to obtain such bounds is to define measures on E which in some meaningful sense respect the geometry of E.

A particularly robust notion of s-dimensionality for measures is the following. We say that a Borel measure μ is s-Frostman if for all $x \in \mathbb{R}^d$ and r > 0,

$$\mu(B(x,r)) \le r^s$$
.

A classical observation, often called the *mass distribution principle*, is that the existence of Frostman measures provides a lower bound on the Hausdorff content.

Lemma 1.1. Let $E \subset \mathbb{R}^d$ be Borel and suppose μ is s-Frostman. Then

$$\mathcal{H}^s_{\infty}(E) \ge 2^{-d} \cdot \mu(E).$$

Proof. Let $\{E_i\}_i$ be any cover for E. Then since each set E_i is contained in a ball $B(x_i, |E_i|)$,

$$\mu(E) \le \sum_{i} \mu(E_i) \le 2^d |E_i|^s.$$

Since $\{E_i\}_i$ was arbitrary, by rearranging we obtain the desired bound.

Frostman's lemma is a fundamental theorem in geometry which states that the converse is also true. This result was first established in Otto Frostman's PhD thesis [Fro35].

Theorem 1.2 (Frostman's lemma). Let $E \subset \mathbb{R}^d$ be compact with $\mathcal{H}^s_{\infty}(E) > 0$. Then there exists a s-Frostman measure μ with $\mu(E) \geq 2^{-d}\mathcal{H}^s_{\infty}(E)$.

A generalization of E for analytic sets also holds; see for instance the exposition in [BP17, Appendix B].

The goal of this note is to give an exposition of the proof of Theorem 1.2 from the perspective of subadditive functions on trees. This proof is of a similar flavour to that given by Tolsa [Tol14, Theorem 1.23]. Beyond a proof of Theorem 1.2, we also hope to answer the following questions:

- Why does the Hausdorff s-content appear?
- Can we give a meaningful description of the set of all s-Frostman measures?

We will demonstrate the universality of Hausdorff content and give a simple inductive description of all *s*-Frostman measures on trees.

1.1. Trees and tree-valued functions. Instead of working with compact subsets $E \subset \mathbb{R}^d$, we it simpler to work instead with representations of the sets E by compact ultrametric spaces which we call *metric trees*. By taking a representation of $E \subset \mathbb{R}^d$ using a tree (such as the dyadic tree) it will not be so difficult to transfer our results from trees back to the original set.

Fix a number $M \in \mathbb{N}$ and $\xi \in (0,1)$ and consider the space $\Omega = \{1, \dots, M\}^{\mathbb{N}}$ equipped with the metric

$$d(x,y) = \inf\{\xi^m : x_1 \dots x_m = y_1 \dots y_m\}.$$

Given a finite word $i \in \{1, ..., M\}^m$, we write |i| = m and

$$[i] = \{x \in \Omega : x_1 \dots x_m = i\} \subset \Omega.$$

The metric d is precisely such that the sets [i] are open and closed balls with diameter ξ^m . In fact, each closed ball B(x,r)=[i] where i is the maximal finite prefix of x with $\xi^{|i|} \geq r$

Now, let $K \subset \Omega$ be non-empty and compact. We associate with the compact set K a tree $\mathcal{T} \subset \{1, \dots, M\}^*$ defined by the rule

$$\mathcal{T} = igcup_{m=0}^{\infty} \mathcal{T}_m \quad ext{where} \quad \mathcal{T}_m = \{ \mathtt{i} \in \{1,\ldots,M\}^M : [\mathtt{i}] \cap K
eq \varnothing \}.$$

Since *K* is compact, it holds that

$$K = \bigcap_{m=0}^{\infty} \bigcup_{\mathbf{i} \in \mathcal{T}_m} [\mathbf{i}].$$

We now introduce our key definitions.

Definition 1.3. Let $\rho: \mathcal{T} \to [0, \infty)$ be some function. We say that ρ is *subadditive* if for all $i \in \mathcal{T}$,

$$\rho(\mathtt{i}) \le \sum_{\substack{j=1,\dots,M\\\mathtt{i} \ne \mathcal{T}}} \rho(\mathtt{i} j).$$

We say that ρ is *additive* if equality holds for all $i \in \mathcal{T}$ in the above equation.

Of course, iterating the definition of subadditivity yields the following: if j is arbitrary and $[i_k]_k$ is a finite cover of $[j] \cap K$, then

(1.1)
$$\rho(j) \le \sum_{k} \rho(i_{k}).$$

Also, there is a one-to-one correspondence between additive functions α on \mathcal{T} and finite Borel measures on K: firstly, given a measure μ , the assignment

$$\alpha(\mathtt{i}) = \mu([\mathtt{i}])$$

is additive; and conversely it is well-known that given an additive function α there necessarily exists a unique Borel measure μ satisfying (1.2).

Let us introduce one more definition.

Definition 1.4. We say that a subset $\Delta \subset \mathcal{T}$ is a *cut-set* if each $x \in K$ has exactly one prefix in Δ . We then let \mathcal{T}_{Δ} denote the set of all finite prefixes of words in Δ . We will prove the following generalization of Frostman's lemma.

Theorem 1.5. Let $f: \mathcal{T} \to [0, \infty)$ be any function. Then there exists a unique maximal subadditive function $\kappa \leq f$ on \mathcal{T} . Moreover, if $\Delta \subset \mathcal{T}$ is a cut-set and $\alpha_0: \mathcal{T}_\Delta \to [0, \infty)$ is an additive function with $\alpha_0 \leq \kappa$, then α_0 extends to an additive function $\alpha \leq \kappa$ on \mathcal{T} .

Before we continue with the proof of this theorem, let us briefly explain how this relates to Frostman's lemma. Fix a compact set K with associated tree \mathcal{T} , and let $s \geq 0$. Let $f_s \colon \mathcal{T} \to [0, \infty)$ denote the function $\mathbf{i} \mapsto r^{|\mathbf{i}|s}$.

Definition 1.6. We say that a function $f: \mathcal{T} \to [0, \infty)$ is s-Frostman if $f \leq f_s$.

Given an exponent s, and recalling the correspondence between additive functions and measures, our goal is to find a non-zero additive s-Frostman function. It will turn out that the subadditive function κ corresponding to f_s is precisely the Hausdorff content $\kappa(\mathbf{i}) = \mathcal{H}^s_\infty([\mathbf{i}] \cap K)$, and the function α is exactly the s-Frostman measure which can be taken to be non-zero if and only if $\kappa(\varnothing) = \mathcal{H}^s_\infty(K) > 0$.

Remark 1.7. Of course, there is nothing particularly special about the potential $f_s(\mathbf{i}) = \xi^{|\mathbf{i}|s}$. It is quite common, for instance, to consider a general *gauge function* φ (that is, an increasing function $\varphi \colon [0,\infty) \to [0,\infty)$ with $\varphi(0)=0$) and define $f_{\varphi}(\mathbf{i}) = \varphi(\xi^{|\mathbf{i}|})$. Since there are no required assumptions on the function f in Theorem 1.5, the theory works in an analogous way.

1.2. Hausdorff content and maximal subadditive functions. We first show, given a general function $f: \mathcal{T} \to [0, \infty)$, that there is a unique maximal subadditive function bounded above by f.

Lemma 1.8. Let $f: \mathcal{T} \to [0, \infty)$ be any function and define $\kappa: \mathcal{T} \to [0, \infty)$ by the rule

$$(1.3) \kappa(\mathbf{j}) = \inf \Big\{ \sum_{k=1}^m f(\mathbf{i}_k) : m \in \mathbb{N}, \ [\mathbf{j}] \cap K \subset \bigcup_{k=1}^m [\mathbf{i}_k], \ [\mathbf{i}_k] \subset [\mathbf{j}] \Big\}.$$

Then κ *is the unique maximal subadditive function with* $\kappa \leq f$.

Proof. To verify that κ is indeed subadditive, let $[j_\ell]_{\ell=1}^m$ be any finite collection of cylinders and let $\varepsilon > 0$ be arbitrary. For each ℓ , let $[i_{k,l}]_k$ be a finite collection of cylinders covering $[j_\ell]$ such that

$$\kappa(\mathbf{j}_{\ell}) \ge \sum_{k} f(\mathbf{i}_{k,\ell}) - \varepsilon.$$

Then since $\{[i_{k,\ell}]\}_{k,\ell}$ is a cover for [j],

$$\sum_{\ell=1}^{m} \kappa(\mathbf{j}_{\ell}) \ge \sum_{k} \sum_{\ell} f(\mathbf{i}_{k,\ell}) - m\varepsilon \ge \kappa(\mathbf{j}) - m\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, it follows that κ is subadditive.

To observe that κ is maximal, let $\rho \colon \mathcal{T} \to [0, \infty)$ be any subadditive function with $\rho \leq f$. Let $j \in \mathcal{T}$ be arbitrary and let $[i_k]_k$ be a finite cover for $[j] \cap K$. Then by subadditivity and the upper bound by f

$$\rho(\mathtt{j}) \leq \sum_k \rho(\mathtt{i}_k) \leq \sum_k f(\mathtt{i}_k).$$

But i_k was an arbitrary finite cover of $[j] \cap K$, so recalling the definition of κ , $\rho(j) \leq \kappa(j)$ as claimed.

The definition of Hausdorff content from the introduction holds in arbitrary metric spaces since it only requires the notion of the diameter of a set. In our setting, since every ball B(x,r) is of the form $[\mathtt{i}]$ for some finite word \mathtt{i} and each $[\mathtt{i}]$ has diameter $\xi^{[\mathtt{i}]}$, it reduces to the following:

$$\mathcal{H}^s_\infty(E) = \inf\Bigl\{\sum_{\mathbf{i}} \xi^{|\mathbf{i}|} : E \subset \bigcup_{\mathbf{i}} [\mathbf{i}] \Bigr\}.$$

Since the function f_s is decreasing (that is, if $[i] \subset [j]$ then $f_s(i) \leq f_s(j)$), applying Theorem 1.8, the unique maximal subadditive function $\kappa_s \leq f_s$ is exactly given by

$$\kappa_s(\mathtt{i}) = \mathcal{H}^s_\infty([\mathtt{i}] \cap K).$$

In this language, the mass distribution principle is the following fact: the weaker property of a subadditive function ρ being s-Frostman necessarily implies that ρ is bounded above by κ_s . Unlike in the Euclidean case, there is no loss of constant.

Corollary 1.9. Let $K \subset \Omega$ be compact. Then κ_s is the unique maximal subadditive s-Frostman function on \mathcal{T} .

1.3. Additive functions bounded above by subadditive functions. We now prove the second half of Theorem 1.5.

Proposition 1.10. Let $K \subset \Omega$ be compact and let ρ be subadditive on the associated tree \mathcal{T} . If $\Delta \subset \mathcal{T}$ is a cut-set and $\alpha_0 \colon \mathcal{T}_\Delta \to [0, \infty)$ is an additive function with $\alpha_0 \leq \rho$, then α_0 extends to an additive function $\alpha \leq \rho$ on \mathcal{T} .

Proof. We inductively define a function $\alpha \leq \rho$ satisfying the hypotheses. Begin by setting $\alpha = \alpha_0$ on \mathcal{T}_{Δ} ; in particular $\alpha(\emptyset)$ is already defined.

Now, suppose we have defined $\alpha(i)$ but not any children of i. Let $J \subset \{1, \ldots, M\}$ denote the indices j such that $ij \in \mathcal{T}$. We must choose $\alpha(ij)$ for $j \in J$ such that the hypotheses hold:

- (i) $\sum_{j \in J} \alpha(ij) = \alpha(i)$; and
- (ii) $\overline{\alpha}(ij) \leq \rho(ij)$.

These conditions are compatible since by induction and subadditivity of ρ

$$\alpha(\mathtt{i}) \le \rho(\mathtt{i}) \le \sum_{j \in J} \rho(\mathtt{i}j).$$

Thus the construction may continue, completing the proof.

Remark 1.11. In the above proof, one might set

(1.4)
$$\alpha(\mathbf{i}j) = \alpha(\mathbf{i}) \cdot \frac{\rho(\mathbf{i}j)}{\sum_{k \in J} \rho(\mathbf{i}k)}$$

which clearly satisfies (i); and by induction, using $\alpha(i) \leq \rho(i)$,

$$\alpha(\mathtt{i} j) \leq \rho(\mathtt{i}) \cdot \frac{\rho(\mathtt{i} j)}{\sum_{k \in J} \rho(\mathtt{i} k)} \leq \rho(\mathtt{i} j)$$

where the second inequality follows since ρ is subadditive. This is the choice made in Tolsa's proof of Frostman's lemma in [Tol14, Theorem 1.23].

The choice (1.4) is the only choice if and only if $\alpha(i) = \sum_{k \in J} \rho(ik)$.

This completes the proof of our main result.

Proof (of Theorem 1.5). Let $f: \mathcal{T} \to [0, \infty)$ be any function. Then Theorem 1.8 guarantees the existence of a unique maximal subadditive function $\rho \leq f$, and the theorem follows by applying Theorem 1.10 to κ .

In particular, we obtain Frostman's lemma as a direct consequence.

Corollary 1.12. *Let* $K \subset \Omega$ *be compact. Then*

$$\mathcal{H}_{\infty}^{s}(K) = \max\{\mu(K) : \mu \text{ is } s\text{-Frostman}\}.$$

Proof. By Theorem 1.9, if μ is s-Frostman, then $\mu(K) \leq \kappa_s(\varnothing) = \mathcal{H}^s_\infty(K)$. Conversely, let $\Delta = \{\varnothing\}$ and define $\alpha_0(\varnothing) = \rho(\varnothing)$, which is trivially additive. Applying Theorem 1.10, α_0 extends to an additive function α with $\alpha(\varnothing) = \alpha_0(\varnothing)$ and $\alpha \leq \rho \leq f_s$. Then the associated measure μ is s-Frostman and has $\mu(K) = \alpha(\varnothing) = \rho(\varnothing) = \mathcal{H}^s_\infty(K)$, as claimed.

In fact, the proof of Theorem 1.10 gives an *inductive* description of all s-Frostman measures μ . The property

$$\mu([\mathtt{i}]) \le \mathcal{H}^s_{\infty}([\mathtt{i}] \cap K)$$

is the *only* obstruction to being s-Frostman: having defined $\mu([i])$ for words $|i| \le m$ with the property that (1.5) holds, any definition of $\mu([ij])$ for $[ij] \cap K \ne \emptyset$ satisfying (1.5) is the restriction of some s-Frostman measure. Every s-Frostman measure on K can be obtained by following the algorithm in the proof of Theorem 1.10.

REFERENCES

- [BP17] C. J. Bishop and Y. Peres. *Fractals in probability and analysis*. Vol. 162. Cambridge: Cambridge University Press, 2017. zbl:1390.28012.
- [Fro35] O. Frostman. *Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions*. French. PhD thesis. Lunds Universitet, 1935. zbl:0013.06302.
- [Tol14] X. Tolsa. *Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory*. Vol. 307. Prog. Math. Cham: Birkhäuser/Springer, 2014. zbl:1290.42002.

Vilma Orgoványi

Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary Email: orgovanyi.vilma@gmail.com

Alex Rutar

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland

Email: alex@rutar.org