Multifractal analysis via Lagrange duality

ALEX RUTAR

ABSTRACT. We provide a self-contained exposition of the well-known
multifractal formalism for self-similar measures satisfying the strong sep-
aration condition. At the heart of our method lies a pair of quasiconvex
optimization problems which encode the parametric geometry of the La-
grange dual associated with the constrained variational principle. We also
give a direct derivation of the Hausdorff dimension of the level sets of the
upper and lower local dimensions by exploiting certain weak uniformity
properties of the space of Bernoulli measures.
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2 ALEX RUTAR

1. INTRODUCTION

1.1. Prelude on multifractal analysis. Many naturally-occurring systems can
be modelled by a sequence of independent and identically distributed random
variables, or more generally by a dynamical system supporting an invariant
measure. In these situations, one is often interested in the long-term behaviour
given typical initial conditions.

In multifractal analysis, one is interested in the non-typical behaviour of a dynam-
ical system. One of the oldest examples which hints at multifractal analysis can
be found in the study of Besicovitch—Eggleston sets [ ; ]. Fix an integer
b > 2 and consider the base-b expansion of a point z € [0, 1]. Suppose x has base-b
expansion = = 0.ajasas ... where a; € {0,1,...,b— 1}. Then the digit frequencies of
x exist almost surely: there is a set £ C [0, 1] of full Lebesgue measure such that
for each x = 0.ajasa3... € Eandi=0,1,...,b—1,

#jra;=1,1<i<n} 1

lim —.
n—o0 n b

But what can be said about non-typical behaviour—the complement of £ is non-
empty, but what can be said about its structure?

In order to understand non-typical behaviour, it is reasonable to associate
with the original system different invariant measures, for which typical points
of the new measure will reveal new properties of the underlying system. For
instance, we may define a measure on [0, 1] by taking points with base-b expansion

chosen randomly according to some alternative distribution (py, . .., p,—1) where,
independently for each n, we choose a,, to be the digit i with probability p,. Typical
points for this measure will not be elements of the set £ (unless py = - -+ = pp—1 =

1/b), but the measure still has positive dimension: in fact, the set of typical points
for this measure has Hausdorff dimension precisely

— >0 pilog p;
log b '

In particular, even though the complement of E has measure 0, it has Hausdorff
dimension 1. Moreover, this gives us a good understanding of the size of the sets
of points where the digit frequencies exist and are given by some distribution.
But beyond this, there are still many points (in fact also a set of full Hausdorff
dimension) for which the digit frequencies do not exist at all and one can ask a
variety of questions about such points.

In this document, we will focus on the multifractal analysis of measures, of
which the above consideration is a special case. Give a compactly supported
Borel probability measure in R? and x € supp p1, we wish to study the local scaling
properties of the measure . at « from the perspective of the local dimension

1 B
dimyee (2, ) = lim Og(#( (x,r)))
r—0 IOgr

9

when the limit exists (or taking a limit infimum or limit supremum when it does
not). If the measure 1 is sufficiently nice, then dimy,.(p, x) almost surely exists and
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attains some constant value. Moreover, this average scaling property is intimately
related to the dimension of the measure (1, since a measure which has larger local
dimensions is more concentrated in neighbourhoods of points in its support. But
what about non-typical points? A reasonable question to ask is how large such
sets are: we will be most interested in the quantity

(1.1) fula) = dim{z € supp p : dimyoc(p, ) = a}

where dim is either Hausdorff or packing dimension; or perhaps some variant by
considering only the points where the lower or upper limit converge to some value
a. We refer to this function as the multifractal spectrum of the measure .. For more
detail on the Hausdorff and packing dimensions, we refer to reader to the books
[ ; ]. The level sets of local dimensions will often be dense subsets of the
support of the measure, so other notions of dimension such as the box dimensions
(which are stable under closure) do not typically yield meaningful information.

Note that the function f, appears to be defined in a somewhat pathological
way: it is the Hausdorff dimension of a level set of an asymptotically-defined
pointwise function, so there appears to be no a priori reason to expect that the
dependence on « is sensible. Nonetheless, the multifractal miracle (perhaps first
observed non-rigorously in the physics literature [ ]) is that the quantity
fu, for the class of measures that we will consider, is in fact a non-trivial concave
analytic function of a. We will study the multifractal quantity f,, in conjunction
with other quantitative measures of smoothness such as the L?-spectrum which
will be introduced in later sections.

For digit frequency measures, and more generally for the family of measures
that we will consider, we emphasize that the multifractal formalism has been
rigorously established in [ ; ]. Expositions of the standard proofs can
be found in [ ,8§11.2] and [ , Chapter 5]. Our goal in this document is to
provide a novel approach to and exposition of these results in order to motivate
the multifractal analysis of measures and highlight the relationship with Lagrange
duality, constrained optimization, and large deviations theory.

1.2. Constrained optimization and duality. Recall our general goal: we have
fixed a measure ;1 and we wish to understand the multifractal spectrum f(«)
defined in (1.1). Suppose that we could choose a measure v such that dimy,. (¢, x) =
a for v-a.e. © € supp v. Then we would immediately obtain the lower bound

fla) > dimy p := sup{dimy £ : E C suppp : u(E) =1}

(see §2.1 for details on dimensions of measures).

Unfortunately, this idea is not particularly helpful in general, since on any set
with given Hausdorff dimension one can find measures with dimension arbitrarily
close to the dimension of the original set. However, measures defined on digit sets
(and more generally the measures that we will consider in this document) have
more structure: they are projections of invariant measures on some compact metric
space Q under a coding map 7: @ — R? Given a continuous transformation
T: Q — Q, recall that a measure v on €2 is T-invariant if for all Borel sets £ C (),
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v(E) =v(T~Y(E)), and ergodic if v(E) € {0,1} for any set £ with £ = T~*(E). Let
M denote the space of T-invariant and ergodic measures. Then one might ask for
the following constrained variational principle: is the general inequality

(1.2) f(a) > sup {dimy 7.v : dimye(p, z) = a for m,v-a.e. x}
veM

sharp? Here, 7.v is the pushforward measure of v under the projection map 7.
Moreover, the dimension of w,v is determined in a loose sense by the entropy of v
as well as the geometry of the projection map 7. If such a variational principle
holds, the situation seems more hopeful! In fact, assuming that the map 7 is
at least reasonably well-behaved, our domain and objective function satisfies
important forms of regularity: the space M is a compact and convex metric space
(with topology precisely the weak-star topology) and the entropy map on M is
upper semicontinuous [ , Proposition 5.2 and Theorem 8.2]. We can therefore
replace the general question of understanding the multifractal spectrum with two
new questions:

1. Can we understand the variational lower bound in (1.2); and

2. Can we prove that equality in (1.2) actually holds?

Associated with the constrained optimization problem which gives a lower
bound to f(«) is the corresponding unconstrained Lagrange dual minimization
problem 7(q), which encodes the Lagrange multipliers problem associated with the
constrained maximization. These dual optimization problems are fundamentally
related by the concave conjugate. When the underlying space and the objective
function are particularly well-behaved, the relationship between f(«) and 7(q) is
well-understood (a particularly elegant case occurs when the domain and objective
function are convex, see for instance [ , Part III]). However, the key difference
in our perspective is to make minimal assumptions on the domain and objective
functions, and to instead understand the parametric geometry of the maximization
problem as a function of a. This allows us to convert topological properties of
the Lagrange dual or generic properties of the function 7 to information about
the primal function f(a) (for instance, connectedness of the set of minimizers or
differentiability of 7 at a value ¢ implies the concave conjugate relation at values
of o corresponding to ¢). This approach is introduced in an abstract setting in §3.1.

We then need to prove that the inequality in (1.2) is in fact an equality. To do this,
we make a key observation: in our setting, the unconstrained dual corresponds
precisely to the L?-spectrum of the measure (see §2.2 for a formal definition). This
proof can be found in Theorem 2.8, which uses the method of types from large
deviations theory to establish a variational formula for the function 7(¢). The
author was motivated to take this approach by the recent work of Kolossvary
[ . In order to complete the proof, it then remains to establish a general
concave conjugate relationship between the L?-spectrum and the multifractal
spectrum through a geometric large deviations bound (see Proposition 3.7). This part
of the argument has much more of a geometric flavour, since we must handle
points which are “invisible” to the dynamics (in that they are non-typical for any
pushforward of an ergodic measure on (2). In Proposition 3.15 we also give a direct
argument using a variant of a classical density theorem for Hausdorff dimension
to establish equality in (1.2).
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In fact, the method of types argument and the density argument are precisely
the tools required to reduce a covering argument for general points to a covering
argument for “typical” points, which allows us to take advantage of the under-
lying dynamical structure of the sets and measures under consideration. Such
reductions are necessary since covering arguments must work for all points of a
set simultaneously.

In this document, we focus on the multifractal analysis of the local dimensions
of a probability measure ;1. One can ask analogous versions of this question, such
as for Birkhoff averages on a dynamical system. In this case, the constrained and
unconstrained optimization problems considered above are intimately related
to the notion of topological pressure (see [ ] for a survey on this dynamical
perspective to multifractal analysis). The general approach to duality is certainly
very applicable in this dynamical context as well. In fractal geometry, however, a
key role is played by the projection map 7 and the geometry of Euclidean space
which prevents us from taking a purely dynamical perspective.

Beyond the scope of this article, there are many new difficulties but also many
recent breakthroughs, such as the establishment of a dynamical dimension gap for
self-affine sets [ ] (in some sense the strongest possible failure of equality in
(1.2)) or the formula for the L9-spectrum of an overlapping self-similar measure
[ ] for ¢ > 1, which draws on deep ideas from discretized sum-product
theory and additive combinatorics.

Many of the ideas in these notes can be extended and used in more general
settings. Some results (such as the general setup in §3.1, or the approach to the
variational principle in §3.4) have been stated with this use-case in mind. However,
generally speaking, for clarity of exposition and in order to highlight the many
connections between these diverse areas of mathematics while minimizing the
technical complexity, we will restrict our attention to a special setting: the case of
self-similar measures satisfying the strong separation condition.

1.3. Self-similar sets and measures. We now introduce the class of measures
which we will focus on for the remainder of this document. This class of measures
generalizes the “digit frequency measures” discussed in the introduction. A key
distinction, which only causes minor difficulties in our setting but is a critical
difficulty in developing this theory in a more general context, is that we do not
require the subdivision into parts to all be of the same size.

Fix a finite index set Z. For each i € Z, let S;: R? — R? be a contracting similarity,
that is for each i € 7 there is some r; € (0, 1) so that

1S;(x) = Si(y)| =ri- |z —y| forall z,y € R?.

We then call the finite family {5; },cz an iterated function system of similarities, or IFS
for short.
Let P = P(Z) C R* denote the set of probability vectors

P ={(pi)icz : pi €[0,1], Y5z pi = 1}.

We equip the space P with the metric from R”: note that P is compact. Now to
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each self-similar IFS, there is a unique compact set K satisfying

K= U Si(K)
€T
and, given a probability vector p = (p;)icz € P, a unique Borel probability measure
p satisfying

upzzpi'uposfl-
€T
We call the set K the attractor and the measure 1, the invariant measure associated
with the IFS {S; },cz and probabilities (p;);cz. If each p; > 0, we note that supp p, =
K.

A classic example of an iterated function system is the Cantor IFS, which is
the system {z — z/3,x — x/3 + 2/3}. Then the attractor K is the middle-thirds
Cantor set (i.e. the set of points in [0, 1] with ternary expansion consisting of only
0s and 2s). If we take the probability vector (1/2,1/2) € P, then the corresponding
measure /4 is just Hausdorff }ggg—measure restricted to K and normalized to have
measure 1.

We say that the IFS {5, },c7 satisfies the strong separation condition, or SSC for
short, if S;(K)NS;(K) = @ for alli # j in Z. Note that, formally, the SSC disallows
measures which arise from a digit frequency set as discussed in the introduction.
However, those measures satisfy the following slightly weaker condition. We say
that the IFS {S; },cz satisfies the open set condition, or OSC for short, if there is an
open set U such that S;(U) C U foralli € Z, and S;(U) N S;(U) = @ for i # j.

The main results in this document also hold under the OSC, though there are
some additional technical complications related to non-injectivity of the projection
map 7 that we can bypass under the SSC. For simplicity of exposition, we will for
the remainder of the document assume that the SSC holds.

1.4. Shift space and symbolic coding. As a result of the iterative nature of the
construction of self-similar sets and measures, it is natural to introduce notation
formalizing this iterative procedure. One natural setting for such a construction is
the full shift on symbols Z. Let 2 = Z" denote the set of sequences on symbols
equipped with the product topology, and let 7: 2 — K denote the natural coding
map defined by

{7(()i21)} = lim Sj, 00 8, (K).
Note that if the IFS satisfies the SSC, the map 7: (2 — K is a homeomorphism.

It will be useful to introduce some notation to handle sequences in €. First,
let 7* = |, , Z" denote the space of all finite words on the alphabet Z, equipped
with the operation of concatenation. Given i € Z* and k € 7%, we say that i isa
prefix of k if there isa j € Z* so that k = 1j. Concatenation also extends naturally
to expressions of the form iy for v € €2, and allows us to define the notion of a
prefix of an infinite word. In particular, for v € Q, we let 71,, denote the unique
prefix of 7y of length n.
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We equip the sequence space 2 with the shift map o: 0 — ) defined by

U(il,i27i3, .. ) = (ig,ig, .. )

For example, foralln € N, v = 71,,0™ (). A probability vector p € P then naturally
defines a shift-invariant and ergodic product measure p". We call such a measure
Bernoulli. The self-similar measure y, is simply the pushforward of p" by the
coding map 7.

Finally, we set for p = (p;)iez

Qp: {(Zn)zozl e Q: lim #{e Le ]fOI‘ _6_ n}

n— o0 n

= p, for j EI},

in other words the collection of sequences in 2 where the digit frequencies exist
and are given by the probability vector p.

It will turn out, for our purposes, that it suffices to consider only Bernoulli
measures, and so we will not consider the more general class of ergodic measures
on (2 for the remainder of the document. Note that for more general iterated
function systems (with corresponding geometric complexities associated with the
map 7), this is no longer the case.

2. DIMENSIONS AND L?-SPECTRA OF SELF-SIMILAR MEASURES

In this section, we begin with some classical theory: the notion of the Hausdorff
dimension of a measure. We will also derive a variational formula for the L9-
spectrum of a self-similar measure satisfying the SSC using the method of types
from large deviations theory. Such a strategy was motivated by the main results
and techniques used in [ ].

There are substantial advantages to deriving a formula for the LI-spectrum
in terms of a variational formula, in contrast to classical proofs such as the one
given in [ , §11.2] which work directly with an analytic closed formula. Firstly,
it suffices to consider continuous functions rather than smooth functions, which
gives much more flexibility in more complex settings. Secondly, as we will see in
§3.1 and §4.2, there are many indirect techniques to understand the geometry of a
general optimization problem, which makes it easier to obtain precise information
instead of directly using an implicit formula. Such techniques become essential in
settings where a closed formula for the L?-spectrum may not even exist.

2.1. Hausdorff dimension of self-similar measures. Given a Borel probability
measure /i, we denote the local dimension of y at x by

1 B
dimyee(p, ) = lim log u(Bw.r))
r—0 logr

when the limit exists. If the limit does not exist, we write dim, . (u, z) (resp.
dimye. (1, 7)) to denote the respective quantity except with a limit infimum (resp.
limit supremum) in place of the limit. We can use the local dimensions to give a
formulation of the Hausdorff dimension of .
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Definition 2.1. Given a compactly supported Borel probability measure 1, we
write

dimyg p = esssup dimy,.(p, x).
TESUpPP U
We say p is exact-dimensional if there is an o € R so that dimy,.(p, z) = o for p-a.e.
T € supp p.

Equivalently, as explained in [ , Proposition 10.1],
dimyg p = sup{dimyg £ : E C supp p : u(E) = 1}.

Now given a self-similar IFS {S;}icz and p = (pi)ier, w = (w;i)iez € P(I),
denote the cross entropy and entropy by

H(w,p) =Y wilog(l/p;)) and  H(w)= H(w,w).

i€l
We also denote the Kullback—Leibler divergence (also known as the relative entropy)
by

Dxr(w || p) = H(w,p) — H(w).

We recall by Jensen’s inequality applied to the logarithm, Dk (w || p) > 0 with
equality if and only if w = p. For a general introduction to these concepts in
information theory, we refer the reader to [ ]. Finally, we define the Lyapunov
exponent

w(w) = 3 wilog(1/r,).

1€T

The Lyapunov exponent captures the asymptotic contraction rate at points typical
for the measure 4i,,. The key role of the Lyapunov exponent in dimension theory
is highlighted, for instance, by the seminal works of Ledrappier-Young [ ;
I

We will now determine the dimensions of self-similar measures. We first
observe the following technical lemma, which allows a reduction to balls which
intersect precisely one image S; (K') for i € Z*. In essence, this will allow us to treat
the geometry of 1, in a purely symbolic way. Note that diam(K)-r; = diam(S;(K)).

Lemma 2.2. For all sufficiently small 6 > 0 and for all p € P with p; > 0 forall i € Z,
there is a constant ¢ = c¢(p, ) > 0 so that forall i € T* and x € S;(K),

c-pi < Np(B(fEaCS : Ti)) < Dpi.

Proof. Since the IFS satisfies the strong separation condition, for all sufficiently
small 0 > 0 the § - r;-neighbourhood of S;(K) in K is again S;(K). Thus

MP(B(‘Taa ' Ti)) < pi.
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On the other hand, since § > 0 is fixed, there is a uniform N € N and a word
j € I% so that
S; 0 85(K) C pp(B(z, diam(S;(K)) - 6)).
Taking ¢ = min{p; : j € Z"} gives the desired result. O

We also obtain a simple lemma which gives information about local dimensions in
terms of the digit frequencies of the symbolic representation.

Lemma 2.3. Let w € P(Z) and let v = (iy,)50 € Q. Then

H(w.p)

dimyg, ) =

Proof. By Lemma 2.2, thereisa 6 > 0 and a ¢ > 0 so that for any n € N,

C Py, S /‘<B(7T(’Y)a 0 - Tﬂn)) < DA, -

Thus
1 1 TS R =
dimloc(u,ﬂ'(”y)) — hm ng"/]n — hm Og HzeIpiLqi —_ (w,p)
n—00 log T, n—00 IOg Hz’eI r; X(w)
from the definition of (2,,, as claimed. 0

In particular, we obtain following well-known dimension formula for self-similar
measures.

Proposition 2.4. Let {S;}icz be an IFS satisfying the SSC and let p, w € P. Then for
flap-.€. T € SUPD flay,

dimloc (Npa ZL’) =

In particular, p, is exact-dimensional with dimension

H(p)

Proof. By Kolmogorov’s Strong Law of Large Numbers, w"(€2,,) = 1. Thus the
dimensional result follows from Lemma 2.3. O

2.2. Li-spectra of self-similar measures. Let i be a compactly supported Borel
probability measure and let ¢ € R. We write for r € (0, 1)

G,.(r,q) = sup { Z p(B(zi, 7)) : {x;}; is a 2r-separated subset of supp p } .
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We then denote the L9-spectrum of p at g by

R TI IOg(;u(T>Q)
7,(q) = llgglf T.

We recall the following standard result.

Lemma 2.5. Let ;1 be a compactly supported Borel probability measure. Then 7,(q) is a
concave and increasing function of q. Moreover, 7,(0) = — dimp(supp p) and 7,(1) = 0.

Proof. Let ¢1 < ¢2. The observation that 7,(¢) is increasing follows since
w(B(xi, )t > pw(B(z;,7))® for any x; € supp f.

In addition, concavity is a standard application of Holder’s inequality: let
0 < A < 1, and then with Holder’s inequality with exponents 1/A and 1/(1 — \),

2.1) ZM(B(a:i,r))Aql“H)ng (ZM(B(a:i,r))“> (ZM(B(mi,r))q2>

and taking suprema and logarithms yields concavity.

Finally, using the equivalence of packings and coverings, we see that 7,(0) =
— dimp(supp p), and since p is a probability measure there is a constant ¢ > 0 so
that0 < ¢ < G,(r,1) < 1forallr > 0,so 7,(1) =0. O

1-X

In our special setting, we can rewrite the L?-spectrum essentially as a symbolic
sum. For notational simplicity, we will write 7, in place of 7,,,, where the depen-
dency on the underlying IFS is implicit. Since (r,; )72, is a strictly decreasing
sequence for each v € (), setting

A={iel" :ri<r<ry-}

we have that A, is a section of Z* for each r > 0 (that is, for all n sufficiently

large and i € 7", i has a unique prefix in A,). Heuristically, A, is a symbolic

representation of the collection of images S; (K) with diameter approximately .
We now have the following immediate application of Lemma 2.2.

Lemma 2.6. Let p € P be arbitrary and q € R. Then there are constants ¢y, cy > 0
(depending on q) and a constant 6 > 0 so that for all r € (0, 1)

CIG,up (5T7 Q) S Z pz S C2G,up ((57‘, q)
i€Ar
In particular,
o logdlin, Y
Tp(q) = h{an_}glf “Togr

Proof. By Lemma 2.2, there are constants § > 0 and ¢ > 0 so that for each
r € (0,1)and i € A,, there is some z; € S;(K) so that

(2.2) c-pi < p(B(zy,6r)) < ps
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and moreover B(x,or) N K C S;(K), so that {z; }ica, is a 20r-separated subset of
K.

On the other hand, there is some N € N so that if {z;}; is any 20r-separated
subset of K, then there is some unique i; € A, so that B(z;,dr) N K C S;,(K), and
some j; € Z" so that S;, 0 S;,(K) C B(x;,r). Thus with ¢ = min{p; : j € "},

(23) C,pii S M(B(xla 5T)) S DPi;-

The desired inequalities now follow from (2.2) and (2.3). O

In our next result, we will use the method of types from large deviations theory:
we refer the reader to the book by Dembo & Zeitouni [ ] for more background
and detail. To thisend, forn € N,i € Z,and i = (iy,...,i,) € Z" let {(i) denote
the frequency of letter i in i, that is

:#{jzlghgn,ij:i}'
n

(2.4) &i(1)

We refer to the probability vector £(i) = (&(1))iez € P(Z) as the type associated
with 1.
Now givenan r € (0, 1), we let

T ={&(l):1 €A}

denote the set of all types at scale r. Conversely, given a w € 7, we let

Cr(w) ={i€A, :£1) =w}.

The main point of introducing types is that the values r;, |i|, and p; (for p € P) are
constant on each type class. Moreover, there are few types, and we can determine
the size of each type class up to a sub-exponential error. Here, for notational
simplicity, we use Landau’s asymptotic notation, i.e. given real-valued functions
f, g defined on some domain A, we say f = O(g) if there is a constant C' > 0 so
that |f(a)/g(a)] < C forall a € A.

Lemma 2.7. Let r € (0, 1) be arbitrary. Then

#T. _  (loglog(1/r)
= orr =0 (Chatirn )
and, for fixed w € T, with w = £(1) for i € A,,
#Cr(w) _ <10g10g(1/7"))
(2.6) i H(w)+ O og(1/r) )"

Proof. First, since r; € (0,1) foralli € Z, forallr € (0,1) and i € A, |i| <

log(1/7).
Since the type £(1i) does not depend on the order of the letters in i, a direct
count (see [ , Lemma 2.1.2] for more detail) gives for each m € N

#{E(1) i €T™) < (m+ 1)#,
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Thus there is a fixed constant M > 0 so that
[Mlog(1/7)]
#T <Y #{E@E) eIy
m=0
< (Mlog(1/r) 4+ 1) - (Mlog(1/r) + 2)#*.

Taking logarithms and dividing through by log(1/r) gives (2.5).

Finally, (2.6) is precisely [ , Lemma 2.1.8], again using the fact that |i| <
log(1/r). Alternatively, one can directly apply Stirling’s formula—that log(n!) =
nlogn —n+ O(logn)—and use the observation that the number of distinct permu-

tations of a word i = (i1, ...,4,) with k; =n - €(1) fori € Zisn!- ([I,; ki!)_l. O

We can now establish our formula for the L-spectrum of a self-similar measure.

Theorem 2.8. Let p € P. Then the limit defining 7, exists, and moreover

g}

7p(q) = inf

weP

Proof. We fix p € P and g € R. Suppose r € (0, 1), fix w € 7,, and let m denote
the common value of |i| for i € C,(w). Then for any i € C.(w),

o= [T =L
i€T €T

Therefore

> opl=)" #C(w) [ [ oI,

i€, weT, €T
and moreover, for fixed w € 7;, by (2.6) in Lemma 2.7,
log #C;(w) [Liez "™ _ qH(w,p) — H(w)  (loglog(1/r)

log x(w) log(1/r) )~

Thus by (2.5), with w™ € T, chosen to minimize the quantity in (2.7),

log sen, Pl _ qH(w",p) - Hw") (loglog(l/r))

logr B x(w™) log(1/r)

2.7)

But the map w W is continuous, so by compactness of P and since

7T, becomes arbitrarily dense in P as r goes to 0, it follows that the limit defining
7p(¢) in fact exists and is equal to the desired expression. O

2.3. An explicit formula for the L¢-spectrum. We now have a formula for 7,(q)
as the solution to an optimization problem, but it would be nice to have an
explicit formula. Let’s work out a reasonable guess for the formula for 7,(¢q) using
Lagrange multipliers, for now sweeping any technical issues under the rug.
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The space of probability vectors P is a subset of the affine hyperplane {w €
R” : [|w| = 1}. Write

(2.8) (¢, w) = qH(w, p) — H(w).

Suppose w is a minimizing vector for 7,(¢). Informally applying the method of
Lagrange multipliers, such a vector w € P must satisfy

9 ¢lqw) 0

ow; x(w) 7)\811)@-(’

fwf = 1) = A
for some A € R. In particular, for each i € Z,

2

X(w) - 56(q,) + 6(0,) - (w) = A+ x(w)

which, after rearranging and computing the derivatives, yields

(2.9) qlog(1/p;) +logw; +1 = X x(w) + 7p(q) log(1/7;).

Multiplying by w; and summing over all i € Z,

o(g,w) +1 =X x(w)+ x(w)7p(q).

But w is a minimizing vector, so ¢(g, w)/x(w) = 7,(q) so that A = 1/x(w). Substi-
tuting this back into (2.9) and rearranging for w; yields

= pgT’;Tp(Q) .

Therefore, we would guess that 7,(¢) must be the solution to the equation

Z pq _Tp —

i€l

and the minimization is attained at the probability vector (p{r;, (q)) .

While the derivation above is certainly not rigorous (though it CeaIn be made
rigorous without too much trouble), it helps to motivate the following formula for
the L?-spectrum which we will prove is the correct formula through a very simple
information-theoretic argument. First, define the function

= ol

ieT
Note that for fixed ¢, t — 1(q,t) is a strictly decreasing function of ¢ with
lim; 00 ¥(q,t) = 0 and lim;_,o, ¥(q,t) = oo. Thus there is a unique value 7'(q)
so that ¢(¢,7(¢)) = 1, and moreover, by the analytic implicit function theorem,
T'(g) is an analytic function of ¢. Finally, we define the vector

z(q) = (pir; ")
which is indeed a probability vector by the definition of 7'(¢). This was the original
formula established for the L?-spectrum by Arbeiter & Patzschke [ I

1€T



14 ALEX RUTAR

Proposition 2.9 ([ D. Fix p € P and q € R: then 7,(q) is the unique solution to
(2.10) qu —7p(9) _
i€l
In particular, T, is analytic on R.
Proof. Observe for w € P that
qH(w,p) — H(w) D (w || 2(9))
x(w) x(w)
But Dk, (w || z(¢)) > 0 with equality if and only if w = 2z(g), so the minimization

is attained uniquely at the probability vector z(¢) with value T'(¢). Thus the result
follows by Theorem 2.8. 0

=T(q) +

2.4. Asymptotes of the Li-spectra. To conclude this section, let’s analyze the
asymptotic behaviour of 7,,(¢), as well as the limiting values of the corresponding
optimization vector, which we recall is given by

z(q) = (pz r; ’”(q)>iez-

First, for each i € Z, let x; be such that " = p;, that is

_ log p;
"~ logr;

In particular, z;(q) = r{™ " (@ But for q >0, qr; — 7p(q) > qFmin — Tp(q), and the

2;(q) cannot all converge to 0 as ¢ diverges to 1nf1n1ty The same argument holds
for ¢ < 0, so that lim,_, z;(¢) > 0if and only if k; = Kmin, and lim,,_ z;(q) > 0 if
and only if k; = Kmax. Thus the limits z(+o00) = lim,_, 4, 2(¢) exist and are given

by

0 F R max
2i(—00) = { Skl where Z pomex =1,

Smax 7
T

i - Ri = Rmax

1€

Ri=Kmax

and similarly

0 F Ry min Smi
2z;(00) = { SRl where Z pimin = 1.

Tismin - Ki = Kmin icT !
Equivalently,
Smax = Lm (gr; — 7p(q)) and Smin = 1M (gr; — 7(q))-

q——00 q—00

This implies that 7,,(¢) has asymptotes given by

g—oo(Q) = Rmax — Smax and eoo(q) = Rmin — Smin-

A general depiction of the function 7,(¢) along with its asymptotes is given in
Figure 1.
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q+— q - Kmax — tmax

FIGURE 1. Plot of the Li-spectrum of the measure 1, along with its
asymptotes.

3. LAGRANGE DUALITY AND MULTIFRACTAL FORMALISM

Before proceeding with the remaining results of this section, let us summarize
the current situation. We are attempting to obtain a formula for the multifractal
spectrum f,(«a), for which we have the variational lower bound

fpla) > sup {dimpy fiy : dimyee(ptp, ) = a for pp-a.e. k.
weP
By Proposition 2.4, the optimization on the right hand side is precisely
H H
(3.1) sup { (w) : (w.p) _ a} :
wep | X(w)  x(w)

In order to understand this optimization problem, taking motivation from the
method of Lagrange multipliers, we want to study the Lagrange dual, which is
optimization problem

(3.2) inf {

weP

x(w) '

But this optimization problem is precisely the formula for the L¢-spectrum of i,
as proven in Theorem 2.8! Therefore, in order to complete the proof, we need two
main ingredients:

1. We need to understand the relationship between the dual optimization

problems (3.1) and (3.2).

2. We need to obtain bounds on f,(«) by using the L9-spectrum of .
These two ingredients are handled in the subsequent sections. In §3.1, we address
the duality in 1 in a general context—real-valued continuous functions on a com-
pact Hausdorff topological space. Then in §3.2 we study the relationship between
fp and 7 in fact, we will prove that fj,(a) < 7, («) in general.
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Finally, we provide an alternative proof of the variational formula which avoids
the machinery of duality in §3.4. This proof is conceptually useful for different
reasons, since it also immediately generalizes to different types of level sets of
local dimensions.

3.1. Continuous optimization and duality. Suppose A is a compact Hausdorff
topological space and suppose we are given a continuous function u: A — R
and an upper semicontinuous function v: A — R. We consider the constrained
optimization

f(a) = max{v(w) : u(w) = o}

wEA

with corresponding unconstrained dual

(3.3) 7(q) = 1rlflelg{q cu(w) — v(w)}.

Here, the maximum over the empty set is —co. Note that both the maximum and
minimum are attained on compact sets since v is upper semicontinuous. Of course,
T is a concave function of ¢ since it is an infimum of affine functions. On the other
hand, f need not be concave.

In some sense, one can think of the function 7(¢) as encoding the geometry of
the Lagrange multiplier problem associated with f(a). However, this is only a
motivating heuristic since in our abstract setup, there is no differentiable structure
in sight.

Before we continue, let’s recall some basic facts from convex optimization. For
a more in-depth introduction, we refer the reader to [ ]. First, for a general
function g: R — RU{—o0}, we denote the concave conjugate by

*(a) = inf (qa — :
g"(a) = inf(ga — g(q))
Note that g* is always concave, and ¢** is the concave hull of g.
Now suppose moreover that g: R — RU{—o0} is a concave function. Then for
q € R, we write dg(q) to denote the subdifferential of g at g, i.e.

dg9(q) ={a: aly —q) +9(q) > g(y) for any y € R}.

Equivalently,

(3.4) 9" () +g(q) < aq

with equality if and only if & € 0g(q). We also let 0~ ¢(q) (resp. 9% g(q)) denote the
left (resp. right) derivative of g of ¢. Then dg(q) = [0 g(¢q), 0 g(q)]. In particular, ¢
is differentiable at ¢ if and only if dg(q) = {a}, in which case ¢'(¢) = «. Since the
subdifferentials form an ordered family of intervals of R which overlap only on
their endpoints, there can be at most countably many points with non-singleton
subdifferential: in particular, g is differentiable at all but countably many ¢ € R.



MULTIFRACTAL ANALYSIS VIA LAGRANGE DUALITY 17

Now, we say that a line
(t)y=a-t+0b

is a supporting line for 7 at ¢ if 7(¢) = ¢(q) and £(t) > 7(t) for all t € R. Equivalently,
07 (q) is precisely the set of possible slopes of supporting lines for 7 at g.

Now consider specifically the function 7 from (3.3). We say that 7 is supported
at (¢, «) for ¢ € Rif there isa w € A so that 7(¢) = ¢ - u(w) — v(w) and u(w) = a.
Equivalently, the line ¢ — ¢ - u(w) — v(w) is a supporting line for 7 at ¢ with slope
a. Therefore, the problem of determining the values of a for which 7 is supported
at (g, o) is precisely the problem of determining the slopes of supporting lines
which appear from the minimization defining 7(q).

For the remainder of this section, we establish some elementary facts concern-
ing the dual problems 7(¢) and f(«). We begin with the following basic fact about
supports of the function 7.

Lemma 3.1. Forany q € Rand a € {07 7(q),0"7(q)}, T is supported at (q, ).

Proof. Let (¢,);2, be a sequence converging to ¢ monotonically from the left.
For each n € N, write 7(¢,) = ¢, - u(w, ) — v(w,,) for some w,, € A. By compactness
of A, passing to a subsequence if necessary, we may assume that lim,,_,,, w,, = w.

Next, observe that the line
lo(t) =1t u(w,) —v(w,)

is a supporting line for 7 at ¢, and therefore u(w,) € 07(¢,). Moreover, since
lim, 0o 0~ 7(¢n) = 0~ 7(q), it follows that

u(w) = lim uw(w,) =97 (q).

n—oo

But then by upper semicontinuity of v and continuity of 7,

() < ¢ - u(w) = v(w) < lim (- u(w,) - v(w,)) = lim 7(g,) = 7(q)
so that equality holds and 7 is supported at (¢, 0~ 7(¢)). The same argument works
for 077(q), giving the result. O

Remark 3.2. Since u is continuous and A is compact, it follows that the left and
right derivatives are uniformly bounded away from +ooc.

Using Lemma 3.1, we can now characterize concavity of the function f.

Proposition 3.3. Forany a € R, f(a) < 7*(«), and if T is supported at (q, o) for some
q € R, then f(a) = qo — 7(q) = 7*(v). Moreover, the following are equivalent:

(i) Forall ¢ € Rand o € O7(q), T is supported at (q, o).

(i) f(a) = () forall a € R.

(iii) f is a concave function.
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Proof. First, let o € R be arbitrary. If f(a) = —oo, we are done; otherwise, since
A is compact and v and v are continuous, there is some w € A so that u(w) = «
and v(w) = f(«). Then for any ¢ € R,

7(q) < ¢ u(w) —v(w) = ga = f(a).

But ¢ was arbitrary, so f(«) < 7(a).
Next, if 7 is supported at (¢, ) for ¢ € R, get w so that u(w) = o and 7(¢) =
ga — v(w). But then

(@) = f(@) 2 v(w) = ga = 7(q) = 7"(@).

as claimed.

Now, (i) implies (ii) was proven above, and (ii) immediately implies (iii). It
remains to verify that (iii) implies (i). Let ¢ € R. Then if a € 97(g), write
a = X0"71(q) + (1 — N0~ 7(q) for some A € [0,1]. Then by concavity of f and
Lemma 3.1,

™(a) > f(@)
> A(077(q)) + (1 =N f(077(q))
= Mq0"7(q) — 7(q)) + (1 = A)(q0"7(q) — 7(q))
= qa —7(q)
> 7).

Thus all the inequalities are in fact equalities. In particular, taking w so that
u(w) = avand f(a) = v(w), substituting this into the previous equation implies
that v(w) = ¢ - u(w) — 7(q), as required. O

To round off our results concerning the concave conjugate relationship, let’s de-
scribe what happens as ¢ diverges to +-00. We first extend the derivatives to +0co
by defining
9 7(c0) = lim () and  O0%7(—o00) = lim —=.
g0 g0

That these limits exist and take finite values follows by monotonicity of the partial
derivatives combined with the observation in Remark 3.2. Thus 7 has affine
asymptotes at £oo with slopes 0~ 7(c0) and 0" 7(—o0). We then say that 7 is
supported at (0o, 0~ 7(00)) if there is a w so that the line ¢ — ¢ - u(w) — v(w) is the
affine asymptote of 7 at co. The same definition holds at —oo as well. Then, the
same proof as Lemma 3.1 (along a sequence (¢, ):> ; diverging to +00) combined
with a modified Proposition 3.3 yields the following result.

Proposition 3.4. The function 7 is supported at (co, 0" 17(—00)) and (—oo0, 0~ 7(00)).
In particular, 75 (0" 7(—00)) = f(0T7(—00)) and 7(0~7(0)) = f(0~7(0)).

We conclude this section with two explicit situations in which we can establish the
concave conjugate relationship. The first situation, even without any knowledge
of the underlying optimization, occurs when 7(q) is differentiable.
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Corollary 3.5. If g € Ris such that a = 7'(q) exists, then f(o) = 7*(a). In particular,
7(q) = f*(q) forall ¢ € R.

Proof. 1If ¢ € R and 7/(¢q) = « exists, by Lemma 3.1, 7 is supported at g. Thus by
Proposition 3.3, f(a) = 7*(«). In particular, 7(¢) = f*(¢) for all ¢ € R for which
7'(q) exists. But f* and 7 are both continuous functions and 7'(¢) exists for a dense
setof ¢ € R, soin fact 7(¢) = f*(q) forall ¢ € R. O

As our second (and final) application, we can also use information about the
structure of the set on which the optimization is attained to abstractly establish the
concave conjugate relationship. For each ¢ € R, denote the set of minimizers by

M(q) ={we A:q - u(w)—v(w) =7(q)}

Since v is continuous and v is upper semicontinuous, M (¢) is a compact set for all
q. Moreover, we obtain the following result.

Corollary 3.6. Suppose ¢ € R and M(q) is connected. Then f(o) = 7*(«) for all
a € 07(q). Moreover, if M (q) is a singleton, then T is differentiable at q.

Proof. By Lemma 3.1, 7 is supported at (¢,07(q)) and (¢, 0" 7(q)). Thus get
w_,w, € M(q) so that

ww_)=0"7(qg) and  u(w;)=09"7(q).

Since M (q) is connected and w is continuous, u(M(g)) C R is an interval containing
077(q) and 07 7(q), and therefore 07(q) C u(M(q)). In particular, for any o € 97(q),
there isa w € M(q) so that u(w) = «, so that 7 is supported at (¢, &) and therefore
f(a) = 7*(a) by Proposition 3.3.

If moreover M (q) is a singleton, then we must have w_ = w., forcing 0 7(¢q) =
0%7(q) so that 7 is differentiable at ¢. O

3.2. Multifractal spectrum and general upper bound. For o € R, let

F (o) = {z € supp p : dimyoc(pt, ) = o}
and we define the multifractal spectrum f,: R — {—oo} U [0, d] by

ful@) = dimy F (@)

using the convention that dimy @ = —oo. We say that the measure (. satisfies the
multifractal formalism if

forall « € R.

We first establish the general upper bound for the multifractal spectrum from
the L9-spectrum. Such a bound has been known for a long time; see, for example,
[ , Theorem 4.1]. However, many of the proofs in the literature do not precisely
address the cases when a corresponds to a slope of the asymptote of 7,. We clarify
this case explicitly in the following result.
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Proposition 3.7. Let y be a compactly supported Borel probability measure. Then

fula) < 7(a)
forall o € R.
Proof. Fora € R, r € (0,1) and € > 0, let

M) = { € supp s 17 < u(Bla,) < v},

Our strategy is to control the size of packings with centres in M, .(a) using the
Li-spectrum of p, to which we can then apply the Hausdorff dimension version of
the Vitali covering theorem (see [ , Theorem 1.10]) to obtain bounds on f,, ().

First, suppose we fix a disjoint family of balls { B(x;,r)}¥, where z; € M,..
Suppose ¢ > 0 is arbitrary. Then

N
(3.5) Gulr.q) 2 " (Bl )" = N - palete),

i=1

Moreover, since 7,(¢) = liminf,_,o(log G,(r,q))/(logr), there is some r. € (0, 1) so
that for all r < r., G,,(r,q) < r™@~<. Combining this with (3.5),

(3.6) < ga—7,(q) + (lg| + e

for all » > r.. The same argument for ¢ < 0 also yields (3.6) using the bound
u(Bai,r)) < 1.

Now fix o € R and let { > 0 be arbitrary: we will show for all r sufficiently
small (depending only on ¢ and «) that

log N
log(1/7)

To do this, we must handle a few different cases depending on the choice of a.
Recall that 7,(¢) is concave with asymptotes at oo given respectively by

(3.7)

<7 (o) +¢.

GG 0o — Th(0 o) and G+ G Qoo — T, (Ac0)-

If a, < @ < a_o, thereis a ¢ € R so that ¢ € 7;;(a) so that gqa — 7,(q) = 7*(a).
Taking e sufficiently small so that (|¢| + 1)e < ¢ then yields the claim. Next, if
a = 4y (the case a = a_ is analogous), since

lim (g — 7(q)) = 7, (a),
first get ¢ so that g — 7(¢q) < 77 + (/2, and then get ¢ > 0 so that (|¢| + 1)e < (/2.
Combining this bounds also yields the claim. Finally, if « < —a, or @ > a, taking
an infimum over all ¢ € R yields N = 0, for € sufficiently small depending on a so
in fact M,. () = @ for all e sufficiently small and r sufficiently small (depending
on €).
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Now for each = € F),(«), we can find some N, € N so that for all n > N,
p(B(z,27")) > 279 In particular, for any N € N,

= |J My (a)
n=N

is a Vitali cover for F),(a).

To conclude the proof, fix a € R, let £ > 0 be arbitrary and get M € N so
that (3.7) holds for all for all » < 27*. Suppose {B(z;,27")}3, is a disjoint
subcollection of G.: then with s = 7%(«a) + 2¢,

22 n]s< ZQ nso— n(r*(a)+§ _ 2(2—) < 00

n=N,

by (3.7). Thus by the Vitali covering theorem for Hausdorff measure, there is a
cover {E;}°, for F,(«) such that

i diam E;)*

and thus f, (o) < 7*(a) + 2€. Since £ > 0 was arbitrary, the result follows. O

Remark 3.8. Why is this bound not sharp in general? In the proof, we are control-
ling the number of balls at resolution r which have measure larger (or smaller)
than the expected quantity. However, the set of points with local dimension «
might always be hard to cover at some fixed scale r, even though some parts of the
set are easier to cover at some scales than others. This is a similar phenomenon to
sets for which the Hausdorff dimension and lower box dimension differ—which
is precisely the case here when ¢ = 0.

In fact, one might think of the concave conjugate 7;(«) as a geometric large
deviations bound for the multifractal spectrum. Instead of bounding the set of
points with non-typical scaling, the L?-spectrum bounds the asymptotic size of
the set of points with non-typical scaling at a fixed scale r, as  converges to zero.
This analogy is particularly relevant for a measure with dynamical origin (this is
highlighted, for instance, in the proof of Theorem 2.8).

3.3. Multifractal formalism for self-similar measures. We can now establish the
multifractal formalism for self-similar measures satisfying the SSC by combining
the various tools that we introduced in the previous sections. Again, for short,
given a self-similar measure ji,, we write f, = f,. A depiction of the multifractal
spectrum f), is given in Figure 2, with the same parameters from Figure 1. The
formula for the multifractal spectrum f,(«) is originally due to Cawley & Mauldin
[ ], and the relationship with the L?-spectrum established by Arbeiter &
Patzschke [ ]

Theorem 3.9 ([ ; D. Let {S;}icz be an IFS satisfying the SSC and let p € P.
Then p,, satisfies the multifractal formalism.
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FIGURE 2. Plot of the multifractal spectrum fp(«).

Proof. A direct application of Proposition 2.4 gives that f, > f where

(i) wp )

x(w) ~ x(w)

f(a) = sup
weP

Moreover, by Theorem 2.8 and Corollary 3.5 combined with Proposition 2.9, f = 7.
Finally, f, < 7, holds in general by Proposition 3.7, giving the desired result. [

Remark 3.10. Alternatively, one can use Proposition 3.15 in the following section,
in place of the general upper bound from Proposition 3.7. In particular, if one only
wishes to obtain the dimensional formula for f,(«), this provides a method to
entirely bypass the results concerning L?-spectra.

Remark 3.11. In our proof of the multifractal formalism, we obtain a formula for
fp which also includes the endpoints. Many proofs of the multifractal formalism
either ignore the behaviour at the endpoint entirely, or handle it by explicit argu-
ments which are qualitatively different than the main proof of the multifractal
formalism. In contrast, this optimization technique gives the result at the endpoint
for free: the endpoint behaviour is simply attained as the limit (in the compact
space P) of the optimizing vector for the Li-spectrum. The geometry of this
parametrization is discussed in more detail in §4.

3.4. Alternative proof of the variational principle. In this section, we prove a
general covering theorem for the Hausdorff dimension of sets. This bound is
similar to the general upper bound for the Hausdorff dimension using measures
(see, for example, [ , Proposition 10.1]), though we will state and prove an
extension which permits the choice of measure to depend on the point in the
set. This additional flexibility will allow us to provide an alternative proof of the
variational formula for the level sets of local dimensions.

Definition 3.12. Let K C R? be an arbitrary compact set and A a set of Borel prob-
ability measures with supp o C K for all u € A. We say that A has uniform densities
if for every ¢ > 0, there is a set of Borel measures £ on R? with Y e v(RY) < oo
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and constants C' > 0, n > 0 so that forall x € A, r € (0,n), and = € K, there is a
V=1U,., € Esothat

logy(B(x,C’r)) < logu(B(x,r))
log r - log r

+ €.

Intuitively, having uniform densities combines a uniform semi-continuity condi-
tion on the local dimensions of measures in A with a pre-compactness condition
on A. We emphasize that we do not require the measures in £ to belong to A.

A trivial example is any finite set of compactly supported Borel probability
measures. Less trivially, and more usefully for us, the set of Bernoulli measures
associated with a self-similar IFS (not necessarily satisfying the SSC) also has
uniform densities.

Proposition 3.13. Let {S;}icz be a self-similar IFS with attractor K. Let A C P be
arbitrary. Then {pp, : p € A} has uniform densities.

Proof. Let ¢ > 0 be arbitrary. First, we construct the family of measures £ by
perturbing each p € A away from the boundary of the simplex P. Let § be chosen
so that max{r{:i €7} < J < 1, and set

5= ma 1 )
= max T AT

Then given z € P with z; > g for all i € Z, write
Uz) ={peP:z>pr}

Note that U(z) is an open subset of P. Moreover, suppose p € P is arbitrary.
PartitionZ =7, UZ, where 7, = {i € T : p; > 1/#TI}. Lett =} _,_; pi(1 — ) and
note that ¢t > §/#Z > 0. We then define z = (z;);cz € P by the rule

5pi2i€l_1
Zp = .
p¢+ﬁ12612

Note that z; > g for all ¢ € Z and moreover z; > dp; > p;ri. In particular,
{U(2) : z € P,z > fforalli € T} is an open cover for P, and therefore has a
finite subcover {U(z1),...,U(zn)}. Let

&= {:uzp"'nuzm}-

We verify that £ has the desired properties.
First, for 0 < r < 1 and z € K, write

A, = {i:(il,...,in) e :n>1ry--ry, §r<ri1--~rin71}
Ar(z)={i €A :S:i(K)nB(x,r) #0}.

Observe that for all i € A,.(z), with C' := diam K + 1,

(3.8) Si(K) C B(x, CT).
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Next, let > 0 be sufficiently small so that for 0 < r <7,
3.9 r* <min{r{:i €7}

Finally, let p € P and let z € {zi,...,2,} be chosen so that p € U(z). Let
0 <r <nand z € K be arbitrary. Then

P up(Blx,r) < > r*ps
< Z TiDi by (3.9)
< Z 23 since p € U(z)
< pz(B(z,Cr)) by (3.8)
where € > 0 is arbitrary, so the desired claim follows. O

In the following result, the case where A is a singleton is standard: the additional
flexibility where the measure 1 can be chosen to depend on the point is useful in
applications.

Proposition 3.14. Let K C R? be a compact set and let A be a family of measures on K
with uniform densities. Suppose t is such that for all x € K, there is a ji, € A so that

1 X B )
lim inf e ( (x T)) <
r—0 log r

Then dimy K < t.

Proof. Fix e > 0 and n > 0. For each z € K, by assumption, there is a measure
i, € A and aball B(x,r,) with r, € (0,7) such that

(3.10) it < pe(B(z,12))

Next, since A has uniform densities, there is a constant C' > 0 and family £ of
finite Borel probability measures on R? with 3", _, ¥(R?) < oo so that, taking 7 to
be sufficiently small, for any p € A, z € K and r € (0,7), thereisav =v,,,, € £
so that

(3.11) ru(B(z,r)) < v(B(z,Cr)).

Let B = {B(x,Cr;)}sex. By the Besicovitch covering theorem (see [ ,
Theorem 2.7]), there is a constant c¢; depending only on the ambient dimension d
and families of balls B; C Bfori =1,...,cq such that
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and moreover the balls in each B; are disjoint. Thus for eachi = 1,...,¢; and
B(xz,r) € B;, by (3.10) combined with (3.11), thereis a v € £ so that

r't? < v(B(z,Cr)).

But the balls in each B; are pairwise disjoint, so

Z U dlamB t+2¢ < Z Z 20’/“ t42¢

i=1 BEB; =1 B(z,r)eB;
<33 (Uo)
i=1 ve€  \BeB;
< cq(20)HF% . (Z V(Rd)> < 00
ve€
which, since 7 > 0 and € > 0 were arbitrary, gives that dimy K < ¢. O

We now obtain the following variational upper bound. In fact, our result is a bit
stronger since we can actually bound any point such that the local dimension « is
attained along a subsequence. More precisely, given a Borel probability measure s
and x € supp i, we write

D(p,x) = {a c3(rn)ey \(0s.t. lim log p(B(z, 1)) = a} :

n—o0 log n

Of course, dimy,c(p, z) = « if and only if D(i, x) = {a}. The following formula

was first established in [ ] via a direct covering argument.
Proposition 3.15 ([ D. Let {S;}icz be a self-similar IFS satisfying the SSC. Then
fpla) =dimp{zr € K : o € D(pp, )}
(3.12) {H('w) H(w,p) }
= sup : =ay.
wep [ X(w)  x(w)

Proof. Recalling Proposition 2.4, it suffices to prove that

dimpg{z € K : a € D(up,z)} < ilég{z((;v; ; H)E,(U’Z;f) = a} :

To this end, fix v € 2 and « € D(up, x). By (the proof of) Lemma 2.3, there is a
subsequence (n;)32; so that lim;_, £(71,,) = w and

log 1 (B(z, "Y1, )
k=00 log Ty,

In particular,

H(w, p)
x(w)
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and
1 B H
limng 282 (B@0) o HEO,),w)  H(w)
r—0 logr oo X(EOVL,)) x(w)
Thus the desired result follows by Proposition 3.13 and Proposition 3.14. 0

Remark 3.16. As discussed in the introduction, both the technique of uniform
densities, as well as the method of types, are useful tools for reducing a general
covering argument to a covering argument for “typical” points of a well-chosen
measure. Heuristically, one might interpret the method of types argument as
the “box-dimension” variant of this reduction, whereas the uniform densities
argument is the “Hausdorff” variant of this reduction.

Remark 3.17. A similar argument as presented in this section will allow us to
instead bound the packing dimension of the set {z € K : dimj.(pp, z) = a}. In
order to bound the packing dimension, in Proposition 3.14, instead of providing a
cover at infinitely many scales, one must provide a cover at all scales. Therefore
if one replaces the limit infimum with a limit supremum in Proposition 3.14, one
instead obtains a bound for the packing dimension of the underlying set. Then a
similar argument as given in Proposition 3.15 shows that

() e ),
x(w)  x(w) '

the key difference is that the subsequence (n;)5>, must now be chosen to realize
the limit supremum, which necessitates the assumption that the local dimension
exists. In fact, it is no longer true that the packing dimension of the set {z € K :
a € D(pyp, x)} satisfies the same bound (see, for instance, [ D.

dimp{zr € K : o € dimyoc(ptp, )} = o < sup
weP

4. CONCLUDING THOUGHTS: THE GEOMETRY OF OPTIMIZATION

4.1. Recalling duality. Recall the setting from §3.1: A is a compact set and we
are given a continuous function u: A — R and an upper semicontinuous function
v: A — R. In fact, we now have a bit more context since in the multifractal analysis
of self-similar measures, A = P is the set of probability vectors, the function v is
the dimension of the corresponding pushforward measure

v(w) = dimy floy = ———

and the function u gives the ji,,-typical local dimensions of i,

()
ulw) x(w)

We then considered the constrained optimization problem

fla) = H;lgi{{v(w) u(w) = o}
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with unconstrained dual

7(q) = min{q - u(w) —v(w)}.
In our particular situation f(a) = f,(«) is precisely the multifractal spectrum, and

7(q) = 1p(q) is the Li-spectrum.

In Proposition 2.9, we proved that },_; pir, 7?0 — 1. In particular, by the

analytic implicit function theorem, this gives that 7, is differentiable; this was used
in conjunction with Corollary 3.5 to prove the concave conjugate relationship. In
fact, we proved more: we showed that

(q) = ¢ - u(z(q)) — v(2(q))

where z(q) = (pir; T”(q))i .7 defines a continuous path in P. Moreover, the mini-

mization giving 7,,(¢) is attained uniquely at the vector z(q).

We note that one can also implicitly verify that the minimization is attained
uniquely at a vector z(¢q). Fix some ¢ € R and for each ¢ € R, consider the lower
level set

E(t,q) = {w eP: ¢ Hw.p) - Hw) < t}.

x(w)

Rearranging the condition on E(t, ¢), we equivalently see that

E(t,q)={weP: Hw)—q-Hw,p)+t-x(w)>0}.

But H(w) is a strictly convex function and w — ¢ - x(w) — ¢ - H(w, p) is a linear
function in w, so E(t, ¢) is a convex set. Therefore, noting that

Tp(q) = nf{t : B, q) # 2},

we must have that £(7,(¢)) = {z(¢)}. Since all the relevant functions are con-
tinuous in ¢, we also conclude that z is continuous in ¢. The simplex in R?, the
curve z(gq), and the level sets of the function w — ¢ - u(w) — v(w), are depicted
in Figure 3. The parameters are the same as the parameters used in Figure 1 and
Figure 2,

This technique is useful to determine uniqueness of the minimization, or
continuous path optimization, even in situations where it may be difficult to
determine an explicit formula for the minimization. In fact, we just proved that
the objective function ¢(w) = ¢ - u(w) — v(w) is strictly quasiconvex: that is, for all
wi,wy € Pand A € (0,1),

(b()\'wl + (1 — )\)'lUQ) < max{gf)(wl), ¢(w2)}

We say that ¢ is quasiconvex if the above inequality holds with a regular inequality
in place of a strict inequality. Quasiconvexity is a useful property since it follows
directly from the definition that for continuous quasiconvex functions defined on a
compact convex set, the minimum must be attained on a convex subset. Moreover,
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z(—00)

FIGURE 3. Parametrization of the optimization vector in the simplex
P C R? and contour lines of w + ¢ - u(w) — v(w).

strict quasiconvexity implies that the minimum must be attained at a singleton.
In particular, (strict) quasiconvexity of the objective function w — ¢ - u(w) — v(w)
at some ¢ € R allows us to immediately conclude the validity of the variational
formula (or even differentiability) at ¢, by using Corollary 3.6.

While quasiconvex functions share many properties with convex functions,
one important exception is that a sum of quasiconvex functions is not necessarily
quasiconvex. For instance, this is why the higher-dimensional versions of the
optimization problems discussed in this document are poorly behaved in general,
such as non-uniqueness of measures of maximal dimensions [ 1.

4.2. Parametrizing the optimization. It turns out that even abstractly, having
a continuously parametrized family of minimizers yields differentiability of the
function 7(¢) along with other geometric information. Suppose there is a continu-
ous function z: R — A such that 7(q) = ¢ - u(z(¢)) — b(z(¢)). Using compactness
of A, extend z to take values at +oo by taking any limit along a subsequence of ¢
diverging to +oo. We establish the following properties.

Proposition 4.1. Suppose z: R — A satisfies the above conditions. Then:
(i) The function 7(q) is differentiable with derivative 7'(q) = u(z(q)).
(ii) The function q — u(z(q)) is monotonically decreasing.
(iii) If a € [u(z(0)), u(z(—00))], then

fla) =v(2(ga))

where q, € R is any value so that u(z(q,)) = a.

(iv) If a ¢ [u(z(0)), u(z(—0))], then f(a) = —oc.

Proof. First, to see (i), for each g € R, since z(q) attains the minimum for 7(g),
it follows that u(z(¢q)) € d7(¢). Moreover, by concavity of 7(q), if ¢ < ¢, then
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inf 07(q1) > sup 07(g2). Since z is continuous, this forces 97(q) = {u(z(g))}, so that
7'(q) = u(z(q)), as claimed.

Now, (ii) follows from (i) since 7 is concave and therefore has monotonically
decreasing derivative.

To see (iii), just as in the proof of Proposition 3.3, fix a € [u(z(00)), u(z(—00))]
and let ¢, € RU{—00, 00} be such that u(z(q,)) = «. Then

fla) > v(z(¢a)) = gaax — 7(q) = 7% ()

since a € 07(q,). We recall that the inequality f(«) < 7*(«) holds in general from
Proposition 3.3.
Finally, (iv) follows since

= lim @
u(z(00) = lim T
so for any a ¢ [u(z(00)), u(z(—00))|, f(a) < 7*(a) = —o0. O

As a quick example, one setting in which such a function z must necessarily exist
occurs the optimization defining 7(¢) has a unique minimum for all ¢ € R.

Corollary 4.2. Suppose for each ¢ € R, the minimization defining 7(q) is attained
uniquely at a value z(q). Then z: R — A is continuous.

Proof. Since A is compact, we may use the sequential characterization of conti-
nuity along sequences for which the limit z(g,) exists. Let ¢y € R be arbitrary and
let (¢,)52, be any sequence of real numbers converging to ¢, such that the limit
w = lim, . 2(¢,) exists. Then since 7 is a continuous, u is continuous, and v is
upper semicontinuous,

r(g0) < a0 u(w) —v(w) < lim (g - u(=(g.) ~ v(2(g,))) = lim 7(g,) = 7(a0)
so that all the inequalities are in fact equalities. But z(qy) is unique with this
property, so z(qy) = w and continuity follows. O
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